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Abstract 
 
Despite recent advances in understanding disease biology, treatment of Group 3/4 
medulloblastoma remains a therapeutic challenge in pediatric neuro-oncology. Bulk-
omics approaches have identified considerable intertumoral heterogeneity in Group 
3/4 medulloblastoma, including the presence of clear single-gene oncogenic drivers in 
only a subset of cases, whereas in the majority of cases, large-scale copy-number 
aberrations prevail. However, intratumoral heterogeneity, the role of oncogene 
aberrations, and broad CNVs in tumor evolution and treatment resistance remain 
poorly understood. To dissect this interplay, we used single-cell technologies (snRNA-
seq, snATAC-seq, spatial transcriptomics) on a cohort of Group 3/4 medulloblastoma 
with known alterations in the oncogenes MYC, MYCN, and PRDM6. We show that 
large-scale chromosomal aberrations are early tumor initiating events, while the 
single-gene oncogenic events arise late and are typically sub-clonal, but MYC can 
become clonal upon disease progression to drive further tumor development and 
therapy resistance. We identify that the subclones are mostly interspersed across 
tumor tissue using spatial transcriptomics, but clear segregation is also present. Using 
a population genetics model, we estimate medulloblastoma initiation in the cerebellar 
unipolar brush cell-lineage starting from the first gestational trimester. Our findings 
demonstrate how single-cell technologies can be applied for early detection and 
diagnosis of this fatal disease. 
 
 
 
 
Main 
 
Intratumoral heterogeneity, a hallmark of cancer, refers to diverse molecular and 
functional cell populations within a single tumor1. Intratumoral heterogeneity is driven 
by genetic mutations, transcriptomic/ epigenomic plasticity, and reprogramming of 
microenvironment2. The malignant childhood tumor medulloblastoma is 
heterogeneous3, especially in the Groups 3 and 4 . This heterogeneity makes effective 
treatment of these tumors difficult and contributes to overall low survival rates4. 
Advanced DNA methylation profiling has classified Group 3/4 tumors into 8 distinct 
molecular subgroups5. In addition, single-cell transcriptomic profiling has unveiled the 
intricate regulatory activity of transcription factors and signaling pathways that 
orchestrate cellular diversity6,7. Despite these advances, the role of oncogenes in 
shaping intratumor heterogeneity remains unknown. 
 
A minority of Group 3/4 medulloblastoma tumors harbor single-gene oncogenic 
drivers, including MYC8 and MYCN9 amplifications as well as PRDM6 overexpression 
due to enhancer hijacking via a tandem duplication of the adjacent SNCAIP gene3. In 
contrast, the majority of these tumors display recurrent, large-scale copy number 
changes3,10,11, including chromosome 8 and 11 loss, and chromosome 7 gain and 
isochromosome 17q. A fundamental question of which genetic events initiate and drive 
these tumors remains unanswered. Using single-cell multi-omic and spatial 
transcriptomic approaches, we determined the interplay between large-scale copy 
number variants and single-gene somatic events in driving medulloblastoma 
heterogeneity and evolution.  
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Figure 1. Single-nucleus transcriptional profiling of 16 oncogene-driver Group 3/4 medulloblastoma 
primary tumor samples. a) Overview of target cohort with annotation. Two primary-relapse pairs (MB272/R, 
INF_P/R_637) are from the same patients. b) UMAP of snRNA-seq merged dataset, medulloblastoma subgroups 
annotated. Feature plots showing c) MYC, d) MYCN, e) PRDM6 expression within UMAP of merged snRNA-seq 
dataset. 

Driver oncogenic events in primary tumors are typically subclonal with distinct 
molecular properties  
 
To understand the clonal genetic events in tumor initiation, evolution, and progression, 
we molecularly profiled a specific tumor cohort with a known amplification of MYCN or 
MYC or overexpression of PRDM6 (n=16 primary, n=4 relapses, Fig. 1a, Extended 
Data Table 1, dataset published in Joshi et al bioRxiv). In larger datasets, amplification 
or activation of these oncogenes is present in approximately 30% of Group 3/4 
medulloblastoma cases3, whereas ~70% of cases lack a single-gene somatic event. 
The presence of focal MYC/MYCN amplifications or the SNCAIP tandem duplication 
was verified using bulk molecular profiles or fluorescence in situ hybridization (FISH) 
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for each sample in this cohort (Extended Data Table 1). We analyzed single-nucleus 
profiles of our target cohort, examining both RNA-sequencing (snRNA-seq, n=20) and 
the matched ATAC-sequencing (snATAC-seq, n=16) in the same nuclei. 
 
Uniform manifold approximation and projection (UMAP) visualization of the snRNA-
seq data from primary tumors showed Group 3/4 subgroup-specific clusters without 
batch effect adjustments (Figure 1b); mixed normal cell types arising from different 
samples clustered together as expected (Extended Data Fig. 1a). Expression of the 
oncogenes MYC, MYCN and PRDM6 demonstrated clear sample specificity (Fig. 1c-
e, Extended Data Fig. 1b). In addition, expression of known marker genes delineated 
non-tumor cell types, including PTPRC (microglia), IGFBP7 (meningeal), and AQP4 
(astroglia) (Extended Data Fig. 1c-e). This separation of structure was recapitulated 
with snATAC-seq, as visualized via UMAP (Extended Data Fig. 1f,g). For samples 
with multi-omic data, non-tumor cells in snATAC-seq were labeled based on their 
associated non-tumor clusters from the snRNA-seq data (Extended Data Fig. 1f). 
 
To investigate the clonal heterogeneity of MYCN-amplified tumor samples (subgroups 
V/VII), we adapted the inferCNV12 approach (see Methods) to infer copy number 
variation (CNV) profile of cell-clusters, using both snRNA-seq and snATAC-seq data. 
We identified common CNV changes across all tumor cells, which were also verified 
with bulk data (Extended Data Table 1); however, in most cases, we also observed 
clusters with discordant CNVs, which we labelled as subclones. For example, in all 
MYCN-amplified tumors (n=4), we identified two distinct subclones: with (C1) and 
without (C2) MYCN amplification, respectively (Fig. 2a, Extended Data Fig. 2a). 
Remarkably, in all cases, reconstruction of the putative phylogenetic trees showed that 
MYCN amplification was not the initiating event for the tumor. Instead, large-scale 
CNVs, such as loss of chromosomes 8 and 10 or gain of chromosomes 7 or 17q, were 
already present in the presumptive founder clone (C0) (Fig. 2b). Moreover, additional 
unique CNVs were found only within MYCN- and non-MYCN-amplified subclones. 
 
Next, we examined the differentiation, proliferation, and aggressive progenitor-like 
activity states of individual cells within each subclone using snRNA-seq expression of 
established reference gene lists for these defined medulloblastoma cell states6. We 
identified that both MYCN-amplified and non-amplified subclones maintained separate 
proliferating and differentiated compartments (Fig. 2c,d, Extended Data Fig. 2b). The 
MYCN subclone was also uniquely enriched with a progenitor-like gene expression 
signature (Fig. 2e). As cells differentiated, expression of the oncogene itself showed 
lower expression within the MYCN-amplified subclone (Pearson cor. = -0.23, p < 2.2e-
16, Extended Data Fig. 2c). Similar differentiation levels among subclones and a 
slight bias towards progenitor activity in MYCN-amplified subclones was observed in 
all four MYCN-amplified tumors (Extended Data Fig. 2d).  
 
Performing single-cell CNV analyses on MYC-amplified tumor samples (subgroups 
II/V), we identified a subclonal MYC amplification in 6 out of 7 samples (Fig. 2f, 
Extended Data Fig. 2e). Similar to MYCN-amplified tumors, the common and likely 
initiating events in the founder clone (C0) were large-scale chromosome 10 loss and/or 
chromosome 17q gain, with subclonal MYC-amplification occurring later during tumor 
evolution. Remarkably, the clonal-structure of MYC-amplified tumors was more 
complex (N=3/7 cases), with the formation of three or more unique subclones (Fig. 2f 
bottom). Typically, MYC-amplified subclones had their own proliferating and  
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Figure 2. Clonal proliferation and differentiation gradients are independent of oncogene expression. a) 
Copy number of snATAC-seq data from MYCN samples. Red, chromosome loss. Green, chromosome gain. b) 
Somatic phylogeny trees for MYCN samples. Blue, proportion of MYCN-expressing cells. c) snRNA-seq UMAP of 
single MYCN sample MB183. Gray boxes, proliferating cells. Blue, differentiation signal enrichment in MYCN-
expressing C1 clone. Orange, differentiation signal enrichment in C2 clone. d) MYCN expression in C1 and C2 
clones. e) Per cell gene set variance analysis (GSVA) enrichments of proliferating, progenitor-like and 
differentiation in single sample shown in c. f) Somatic phylogeny trees for MYC samples. Red, proportion of MYC-
expressing cells. Red square, cases MB292 and MB248 with somatic mutations in C0. g) snRNA-seq UMAP of 
single MYC sample MB89. Gray boxes, proliferating cells. Red, differentiation signal enrichment in MYC-expressing 
C2 clone. Orange, differentiation signal enrichment in C1 clone. Aquamarine, differentiation signal enrichment in 
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C3 clone. h) MYC expression in C1, C2, and C3 clones. i) Per cell GSVA enrichments of proliferating, progenitor-
like and differentiation in single sample shown in g. j) Somatic phylogeny trees for PRDM6 samples. Purple, 
proportion of PRDM6-expressing cells. Red square, case MB249 with somatic mutations outside of CNV regions. 
k) snRNA-seq UMAP of single PRDM6 sample MB249. Gray boxes, proliferating cells. Purple, differentiation signal 
enrichment in PRDM6-expressing C2 clone. Orange, differentiation signal enrichment in C1 clone. Aquamarine, 
differentiation signal enrichment in C3 clone. l) PRDM6 expression in C1, C2, and C3 clones. m) Per cell GSVA 
enrichments of proliferating, progenitor-like and differentiation in single sample shown in k. 

differentiating compartments (Fig. 2g,h; Extended Data Fig. 2f). Similar to the 
MYCN-amplified clones, only MYC-amplified clones demonstrated strong enrichment 
of progenitor-like activity compared to non-MYC-amplified compartments (Fig. 2i). 
Differentially expressed genes specific to MYC-amplified subclones were enriched in 
known MYC target genes13 (p<1.11e-16, Extended Data Table 2) and MYC 
expression decreased as cells differentiated (Pearson cor. = -0.18, p < 2.2e-16, 
Extended Data Fig.2g). Across six samples with subclonal MYC amplifications, the 
differentiation level was similar among subclones; however, progenitor-like activity 
was significantly enriched in MYC-amplified subclones (Extended Data Fig.2h) 
 
Lastly, we examined tumors with enhanced PRDM6 expression (subgroups VII / VIII), 
where SNCAIP gene duplication leads to aberrant activation of PRDM6 via enhancer 
hijacking3. In our cohort, we identified 2 out of 5 samples where PRDM6 
overexpression was subclonal (Fig. 2j, Extended Data Fig. 3a). Chromosome 17q 
gain was the most frequent CNV within the founder clone (C0). In contrast to MYC and 
MYCN clones, we could not identify a distinct proliferating compartment in PRDM6-
specific clones (Fig. 2k,l). Instead, we only found an overall small proportion of cells 
(< 5%) with the proliferation gene signature in PRDM6 subclones (Extended Data Fig. 
3b). We also did not identify enriched progenitor-like activity in the PRDM6 subclones 
(Fig. 2m; Extended Data Fig. 3c), except in one specific case where we detected a 
MYCN-amplified subclone that additionally harbored a SNCAIP duplication with 
associated PRDM6 overexpression (Fig. 2b, bottom right).  
 
Despite the low mutational burden in medulloblastoma3, we also inspected the somatic 
single-nucleotide variants (SNVs) to confirm the tumor phylogeny composition 
predicted by snRNA- and snATAC-seq data. Using whole-genome sequencing (WGS) 
data, we examined mutations in CNV regions specific to the founder clone (C0) or not 
lying within CNV. In 9/12 samples, we did not identify the presence of drivers or co-
mutations (exception: 2 MYC-amplified cases, Fig 2f and 1 PRDM6 case, Fig 2j).  
 
Collectively, these findings nominate large-scale CNVs as likely tumor-initiating events 
in group 3/4 medulloblastoma with focal oncogene aberrations only occurring during 
tumor evolution. 
 
Clonal mutation densities suggest Group 3/4 medulloblastoma onset occurs 
from first trimester until first year of life 
 
To investigate clonal evolution during the initiation of Group 3/4 medulloblastomas, we 
analyzed WGS data from the medulloblastoma ICGC cohort3 (Extended Data Table 
3). Somatic tissues accumulate SNVs continuously over time14-16, and hence SNV 
density in the tumor cell of origin (in population genetics “most recent common 
ancestor”, MRCA) can be interpreted as a measure for the patient’s age at tumor 
initiation17,18. To time the developmental origin of medulloblastoma with this approach, 
we quantified clonal SNV densities from the allele frequency distribution of somatic  
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Figure 3. Development of Group 3/4 medulloblastoma somatic mutation profiles and association with cells-
of-origin. a) Overview of Group 3/4 medulloblastoma (MB G34) analyzed by bulk WGS and stratified by subgroup. 
b) SNV densities at MRCA stratified by subgroup (MB G34 I, n = 3, MB G34 II, n = 15, MB G34 III, n = 10, MB G34 
IV, n = 6, MB G34 V, n = 12, MB G34 VI, n = 12, MB G34 VII n = 20, MB G34 VIII, n = 31). Shown are mean and 
95% CI (estimated by bootstrapping the genomic segments 1,000 times; see Methods). c) Early medulloblastoma 
evolution. Initial acquisition in an early common ancestor (ECA) leads to a pre-malignant lesion, which transforms 
into a malignant clone upon acquisition of additional driver genes in the tumor’s most recent common ancestor 
(MRCA). d) SNV densities at ECA and MRCA for Group 3/4 medulloblastoma (n = 109). Mean and 95% CI, 
estimated by bootstrapping the genomic segments 1,000 times. e) Model fit to SNV densities at ECA. Line, mean 
and 95% CI (estimated by bootstrapping the genomic segments 1,000 times; see Methods) of the measured SNV 
densities; shaded area, 95% credible interval. 95% credible interval of the estimated time of birth is shown in grey. 
Second x-axis (estimated weeks p.c.) was computed as detailed in Methods. f) Model fit to SNV densities at MRCA. 
Line, mean and 95% CI of the measured SNV densities; shaded area, 95% credible interval of the estimated time 
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of birth. Second x-axis, estimated weeks post conception (p.c.). g) Modeled tissue of origin (95% credible interval; 
dark grey), pre-malignant clone (95% credible interval; green) and estimated time of birth (95% credible interval). 
Cell counts relative to the maximal population size. Second x-axis, estimated weeks p.c. h) Genetic aberration 
spectrum in Group 3/4 medulloblastoma, stratified by timing (ECA, CNV could be uniquely timed to ECA; MRCA, 
CNV could be uniquely timed to MRCA; ECA or MRCA; SNV density at CNV in agreement with ECA and MRCA; 
clonal, CNV or small mutation was clonal without more detailed time information; subclonal, CNV or small mutation 
was subclonal; n.d., no data). Subclonality of MYC amplification, MYCN amplification and duplication of SNCAIP 
were integrated from the single-cell data. Note that mutations in SNCAIP lead to PRDM6 overexpression. i) SNV 
density at ECA in Group 3/4 medulloblastoma with aberrations in MYC/MYCN or PRDM6. P value, unpaired 
Wilcoxon rank sum test (n = 81 without and n = 28 with aberration). j) SNV density at MRCA in Group 3/4 
medulloblastoma with MYC/MYCN or PRDM6 aberrations. p value, Wilcoxon rank sum test (n = 81 without and n 
= 28 with aberration).k) Number of clonal and subclonal CNV drivers and small mutations in known tumor-related 
genes among Group 3/4 medulloblastoma without detectable ECA. p values, paired Wilcoxon rank sum test (n = 
75). l) Number of clonal and subclonal CNV drivers and small mutations in known tumor-related genes among 
Group 3/4 medulloblastoma with detectable ECA. p values, paired Wilcoxon rank sum test (n = 35). 

variants in 183 primary medulloblastomas of all subgroups (Extended Data Fig. 4a 
and b; comprising 109 Group 3/4 medulloblastomas, 21 infant Sonic Hedgehog 
(SHH)-medulloblastomas, 36 childhood/adulthood SHH-medulloblastomas and 17 
WNT-medulloblastomas). Overall, the clonal SNV densities across subgroups 
recapitulated the age-incidence distribution of the disease, with infant SHH-
medulloblastoma having lowest densities (0.02±0.01 SNVs/Mb), followed by Group 
3/4 medulloblastoma (0.1±0.08 SNVs/Mb), WNT-medulloblastoma (0.28±0.47 
SNVs/Mb) and adult SHH-medulloblastoma (0.41±0.45 SNVs/Mb; Extended Data 
Fig. 4c). Clonal SNV densities were also correlated with age at diagnosis (Spearman’s 
rho = 0.73, p < 2.2e-16; Extended Data Fig. 4d), collectively supporting our approach 
to infer the evolutionary dynamics at medulloblastoma onset from somatic SNVs.  
 
To estimate age of tumor initiation in Group 3/4 medulloblastomas, we analyzed 109 
tumor samples of this subgroup in more detail (Fig. 3a). As with the entire cohort, 
clonal SNV densities were likewise correlated with the age at diagnosis among Group 
3/4 medulloblastoma (Spearman’s rho = 0.52, p = 1.402e-08; Extended Data Fig. 4e). 
However, contrary to the clear temporal order in tumor initiation of the major 
medulloblastoma groups, clonal SNV densities were statistically indistinguishable 
between Group 3/4 medulloblastoma subgroups I-VIII (Wilcoxon rank sum test, all 
adjusted p values > 0.05), indicating that growth of the final tumor mass commences 
around the same developmental time window in all Group 3/4 medulloblastoma 
subgroups (Figure 3b).  
 
To refine our analysis, we timed the acquisition of CNVs (clonal copy number gains or 
loss of heterozygosity, LOH) relative to the tumor’s MRCA. To this end, we compared 
densities of clonal SNVs acquired prior to a chromosomal gain, and hence present on 
multiple copies of a chromosomal region, to the density of clonal SNVs overall 
(Methods). Similar to neuroblastomas18 and other tumor entities17, 34 out of 109 Group 
3/4 medulloblastomas showed evidence for having acquired at least one copy number 
gain in an early common ancestor (ECA), antecedent to the tumor’s MRCA (Fig. 3c,d). 
Hence, our data suggest that at least some CNVs in Group 3/4 medulloblastoma arise 
prior to the onset of tumor growth, in line with multiple rounds of mutation and selection 
at tumor initiation.  
 
To date these events in actual time, we calibrated a population-genetics model of 
mutation and selection during tumor initiation18 with the measured SNV densities at 
ECA and MRCA, along with the patient age at diagnosis (see Methods for details). 
Briefly, the model assumes that medulloblastoma initiation is driven by clonal selection 
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for two consecutive drivers, associated, respectively, with ECA and MRCA, in the 
transient cell population of (differentiating) unipolar brush progenitor cells from the 
rhombic lip19-21 (Extended Data Fig. 4f). Upon malignant transformation of the tumor’s 
MRCA, we assume exponential growth until a tumor size of 109 cells (corresponding 
to a few cubic centimeters) is reached at the age of diagnosis (see Methods for 
details22). By fitting this model to the clonal SNV densities measured in Group 3/4 
medulloblastomas, we inferred that the first oncogenic event (i.e., the ECA) occurs 
within the first gestational trimester in 24% of the cases, during late gestation in around 
35% of cases and within the first year of life in 20% of cases (Extended Data Fig. 4g, 
Fig. 3e). The onset of tumor growth from its MRCA is placed considerably later, within 
the first decade of life (Fig. 3f), suggesting a long latency phase between pre-
malignancy and the detection of a symptomatic tumor. Overall, the inferred dynamics 
of tumor initiation are consistent with a tumor origin in (differentiating) unipolar brush 
progenitor cells19,23, sustaining a pre-malignant clone that outlives the cell state of 
origin for several years (Fig. 3g). 
 
Large-scale copy number variation drives early tumor growth  
 
To gain mechanistic insight into Group 3/4 medulloblastoma initiation, we asked 
whether particular mutations occur predominantly early or late. To address this 
question, we first focused on CNVs that were found more frequently than expected by 
chance, and hence are likely drivers of malignancy. Combining the enrichment results 
obtained in our cohort (Extended Data Fig. 4h and Methods) with published data24, 
we classified gains of Chromosome 1q, 4, 7, 12, 17/17q and 18, as well as LOH on 
Chromosome 5q, 8, 10/10q, 11 and 17p as putative drivers of Group 3/4 
medulloblastoma initiation. Except for four cases, in which no ECA was identifiable, all 
Group 3/4 medulloblastomas harbored at least one of these CNVs clonally (Fig. 3h). 
Among these, gains of Chromosome 17 or 17q were the most frequent aberrations, 
followed by gain of whole Chromosome 7 and LOH of whole Chromosome 8. In cases 
with detectable ECA, these CNVs were frequently associated with the ECA, 
suggesting that they might be the earliest events during Group 3/4 medulloblastoma 
initiation. In contrast to the high abundance of CNVs, focal events in known driver 
genes (SNVs, indels, focal amplifications/deletions or structural rearrangement) were 
overall rare (Fig. 3h). Among these, amplification of MYC or MYCN and duplication of 
SNCAIP leading to PRDM6 overexpression were the most frequent alterations (Fig. 
3h). However, the single-cell analysis (c.f. Fig. 2b,f,j), reveals that these mutations 
were mostly subclonal. Interestingly, Group 3/4 medulloblastomas with amplification 
of MYC or MYCN, or duplicated SNCAIP had significantly higher SNV densities at both 
ECA (Fig. 3i) and MRCA (Fig. 3j) than the remaining tumors, suggesting that later 
onset of (pre-)malignancy may predispose to the subsequent acquisition of these 
drivers. When quantifying the burden of focal driver mutations overall, Group 3/4 
medulloblastomas without a detectable ECA had on average no focal driver mutation 
at clonal variant allele frequency (VAF) as compared to two large-scale clonal CNVs 
(Fig. 3k). Group 3/4 medulloblastomas with a detectable ECA had significantly more 
clonal driver CNVs than cases without (p = 0.04, Wilcoxon Rank Sum Test); these 
cases harbored with an average of four clonal driver CNVs as opposed to no focal 
driver mutation at clonal VAF (Fig. 3l). In contrast to the stark difference between 
CNVs and focal mutations among clonal drivers, the majority of cases with (62%) and 
without (73%) detectable ECA had no subclonal driver at all with no significant 
difference between CNVs and focal driver mutations (Fig. 3k,l). Thus, the mutational  
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landscape in Group 3/4 medulloblastoma suggests a fundamental role of CNVs during 
tumor initiation, while additional mutations acquired during disease progression seem 
to drive additional evolution in a subset of tumors only. 
 
Subclonal spatial heterogeneity: interspersed or segregated 
 
To better understand the spatial relationship of the tumor subclones and reveal further 
insight into their evolution, we performed spatial transcriptomics on samples with 
available material (n=13 primary, n=4 relapse). We used technology that applies 
multiplexed in situ hybridization of a selected gene set to achieve single-cell spatial 
resolution of a tumor sample (Extended Data Tables 4,5). UMAP visualization of 
merged spatial data from primary tumor samples reflected combined snMultiomic 
profiling, allowing us to distinguish subgroup-specific properties and identify non-tumor 
cell types (Extended Data Fig. 5a-e). The spatial locations of tumor cells were 
determined by the expression of MYC, MYCN, and PRDM6 (Fig. 4a) along with other 
genes associated with proliferation (e.g. MKI67, Extended Data Fig. 5f). The tumor 
microenvironment, including glial, immune and meningeal cells, was characterized 
using cell type-specific markers (Extended Data Fig. 5f).  
 
To determine the spatial distribution of the identified subclones, we projected the 
snRNA/ATAC data onto the spatial data (Fig. 4a, last row). Overall, we distinguished 
two major spatial localization patterns: interspersed, where independent subclones 
mixed throughout the tumor sample, and segregated, where a clear boundary between 
independent subclones could be delineated. In the majority of cases, the subclones 
were interspersed, as observed from the spatial distribution of the corresponding 
marker gene expression.  
 
In MYCN-amplified tumors, the observed clonal architecture derived from snRNA-seq 
data was also present in the spatial data (Fig. 4b). The subclones exhibited an 
interspersed spatial pattern (Fig. 4c), with pockets of MYCN and non-MYCN clones 
highlighted through neighborhood enrichment within the tumor sample (Fig. 4c, inset). 
The proliferating compartments within these subclones were also interspersed across 
the tumor tissue observed by MKI67 expression (Fig. 4e, Extended Data Fig. 5f). On 
a smaller scale, however, neighborhood enrichment analysis showed that proliferating 
cells of subclones clustered together, away from the differentiating cells (Fig. 4d). The 
normal cells were mostly isolated from the tumor subcompartments. 
 
A similarly interspersed spatial pattern of MYC and non-MYC subclones was present 
in MYC-amplified tumors (Fig. 4f,g), yet islands of segregated non-MYC subclones 
were also observed (Fig. 4g, inset). Proliferating cells (MKI67+) were interspersed 
throughout the tumor tissue (Fig. 4i, Extended Data Fig. 5f). The differentiated tumor 
cell compartment within the MYC-subclone (C1-diff) was in closer proximity to the 
proliferating cell compartment within the same subclone (C1-prolif, Fig. 4h). Normal 
cells were largely isolated from the MYC-amplified subclone compartments. 
 
We observed a segregated spatial separation of subclones in the PRDM6 sample (Fig. 
4j,k,m). This spatial segregation of clones was confirmed in another region of the 
same tumor specimen (Extended Data Fig. 5g,h). While the subclones were 
segregated, the proliferating cell compartments within the subclones were  
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Figure 4. Spatial heterogeneity across oncogene-present Group 3/4 medulloblastoma samples. a) Spatial 
gene expression of MYC, MYCN, PRDM6. Last row, projection of clones derived from snRNA-seq. b) Spatial data 
UMAP of representative MYCN sample. c) Spatial visualization of clones of sample in b. Enlarged view of a 
fragment in the bottom right. d) Proximity of each compartment to each other of sample in b. e) MKI67 spatial 
expression of sample in b. f) Spatial data UMAP of representative MYC sample. g) Spatial visualization of clones 
of sample in f. Zoom into specific region on bottom right. h) Proximity of each compartment to each other of sample 
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in f. i) MKI67 spatial expression of sample in f. j) Spatial data UMAP of representative PRDM6 sample. k) Spatial 
visualization of clones of sample in j. Zoom into specific region on top right. l) Proximity of each compartment to 
each other of sample in j. m) PRDM6 and n) MKI67 spatial expression of sample in j. 

interspersed within the spatial block (Fig. 4n, Extended Data Fig. 5i). As expected, 
the neighborhood enrichment analysis in this sample showed the separation of 
PRDM6 clone from other compartments (Fig. 4I). In another sample we also confirmed 
the dual-oncogene, PRDM6-MYCN subclone (Fig. 2b, bottom right) where cells with 
activity in both genes reside in the same spatial regions (Extended Data Fig 5k-l). 
 
Altogether, the observed spatial patterns suggest that clonal evolution does not lead 
to spatial compartmentalization within tumors. Instead, cellular migration may dictate 
communication among the clones, which can then drive competing or collaborative 
interactions among the co-existing tumor populations.  
 
MYC-driven subclones take over during tumor evolution  
 
We identified a primary tumor sample with two distinct subclones (MB272), harboring 
MYC (C3) and MYCN (C2) amplifications simultaneously (Fig. 2f, 5a-c). This 
subgroup II sample was originally characterized as MYC-amplified only, while MYCN 
amplification was not clearly observed in the bulk DNA methylation CNV profile 
(Extended Data Fig. 6a). The MYC and MYCN-subclones in this tumor sample had 
proliferating and differentiating compartments (Fig. 5b, c). The MYC-subclone was 
strongly enriched with progenitor-like activity (Extended Data Fig. 6b). Remarkably, 
a clear spatial separation was observed between MYC- and MYCN- expressing cells 
(Fig. 5d; Extended Data Fig. 6c,d). This spatial segregation (Fig. 5e,f) reflected the 
phylogenetic tree of tumor evolution projected from the snRNA-seq CNV annotation 
(Fig. 2f). Additional sets of subclone-specific genes also showed explicit spatial 
specificity (Extended Data Fig. 6e,f). As expected, low contact proximity was 
identified between MYC and MYCN subclones (Extended Data Fig. 6g).  
 
According to current knowledge, MYC and MYCN amplifications are considered 
mutually exclusive events25 in medulloblastoma (Extended Data Fig. 6h) and other 
tumor types26. Because of the unexpected occurrence of both amplifications in this 
case, we conducted a systematic analysis across a larger medulloblastoma cohort to 
identify additional cases where these oncogenes may co-occur. We identified 6 
putative cases based on DNA methylation CNV profiles (Extended Data Fig. 6i). 
Using immunohistochemistry, we identified another case where both MYC and MYCN 
staining were seen in the same tumor sample (Extended Data Fig 6j). During the 
preparation of this manuscript, a case study reported a primary tumor sample where 
both MYC and MYCN amplified cells were present27. Altogether these independent 
cases suggest the possibility that MYC and MYCN amplifications co-occur within the 
same tumor more frequently than originally thought. Nevertheless, it is noteworthy that 
individual cells within the tumor express only one of these oncogenes and are spatially 
segregated. 
 
The presence of MYC and MYCN subclones cannot be distinguished using the bulk 
profile techniques due to potential low presence of cells of a particular subclone in the 
obtained data. Therefore, we generated unique signatures of MYC- and MYCN-
subclones derived from single-cell data to identify additional samples harboring two 
oncogene amplifications. We performed a deconvolution analysis of bulk  
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Figure 5. Independent oncogene subclones may co-occur in one tumor, but subclones are lost at relapse. 
a) Copy number profiles of snATAC-seq data from MYC-MYCN sample MB272. Red, chromosome loss. Green, 
chromosome gain. b) snRNA-seq UMAP of sample shown in b. Gray boxes, proliferating cells. Blue, differentiation 
signal enrichment in MYCN-expressing C2 clone. Red, differentiation signal enrichment in MYC-expressing C3 
clone. Orange, differentiation signal enrichment in C1 clone. c) MYC and MYCN expression in C1, C2, and C3 
clones. d) Spatial gene expression of MYC (red) and MYCN (blue) from original signals. e) Spatial data UMAP of 
sample shown in d. f) Spatial visualization of clones of sample in d. g) Kaplan–Meyer overall survival probability 
curves for medulloblastoma Subgroup V tumors with high (red) and low (blue) MYC subclone level enrichment. h) 
Somatic phylogeny trees for MYC relapse samples. i) Copy number profiles of snATAC-seq data of relapse sample 
arising from primary sample shown in a-f. k) Spatial gene expression of MYC (red) and MYCN (blue) in spatial 
transcriptomic relapse sample of case shown in a-f. 
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transcriptome profiles, using the MYC/MYCN case as the reference control. Using this 
method, we detected additional samples where MYC and MYCN subclones may co-
occur in the same sample (Extended Data Fig. 6k). We validated this finding using 
FISH on an identified sample with available material (Extended. Data Fig. 6l).  
 
We next checked whether this information could be exploited for diagnostic purposes. 
Therefore, we investigated whether the relative presence of MYC or MYCN subclones 
derived from the deconvolution analysis predicted patient outcomes. In subgroup V, 4 
out of 41 cases harbored a known MYC amplification, based on CNV profiles, and 
correlated with a low probability of survival (Extended Data Fig. 6m). We identified 
14 potential cases with an occurrence of a MYC-amplified subclone based on 
deconvolution. These patients had a lower overall survival (Fig. 5g). Therefore, the 
poor outcomes of subgroup V patients may be explained by an undiagnosed MYC 
subclone that potentially outcompetes other subclones to drive relapse.  
 
To further test this possibility, we performed single-nucleus molecular profiling on 4 
relapse MYC-amplified cases. In all relapse cases, new subclones arose, but all tumor 
cells harbored the MYC amplification (Fig. 5h,i). For example, in the matched relapse 
MYC/MYCN case, the MYCN subclone is lost at relapse (Fig. 5i). This loss of MYCN 
expression was confirmed using spatial transcriptomics (Fig. 5k, Extended Data Fig. 
6n,o). These results suggest that the MYC subclone outcompetes other subclone(s) 
during tumor progression and hence the presence of subclonal MYC amplification at 
diagnosis may predict the probability of relapse. 
 
 
Discussion 
 
Despite advances in understanding the cellular origin of Group 3/4 medulloblastoma, 
the tumor initiating and driving mechanisms remain elusive. We show that the genetic 
aberrations that lead to overexpression of oncogenes are not the initiating events in 
Group 3/4 medulloblastoma. Therefore, MYC and MYCN are likely not the primary 
“drivers”, but instead are acquired after malignant transformation and likely accelerate 
tumor growth. Instead, our results suggest that the initiating or ‘driving’ events in Group 
3/4 medulloblastoma are large-scale CNVs, likely occurring during fetal development. 
This finding is in line with the hypothesis that tetraploidization is a frequent early event 
in medulloblastoma10 and is associated with survival rates and high risk of relapse28. 
Intriguingly, another pediatric tumor, neuroblastoma, has a similar order of genetic 
events: CNVs are the initiating event and occur early in the first trimester of 
pregnancy18. How exactly large-scale CNVs drive early tumorigenesis in different cell 
types and whether this knowledge can potentially be exploited for early cancer 
detection remains to be explored. 
 
Group 3/4 medulloblastoma with MYC, MYCN, or PRDM6 alterations have complex 
subclonal structure, with each subclone having unique properties. Therefore, our 
results strongly argue against the dogmatic “cancer stem cell” hierarchy for Group 3/4 
medulloblastoma, as these tumors maintain distinct subclones with separate 
proliferating and differentiating compartments, irrespective of the presence of 
recognized oncogenes.  
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In addition, undetected MYC/MYCN subclones challenge the bulk analysis approach 
in the diagnostic space. These findings, along with support from others29 suggest that 
single-cell analyses may be an important diagnostic tool in the future, especially for 
Group 4 and subgroup V tumors. In addition, our data challenge the cutoffs used for a 
tumor to be called MYC/MYCN-amplified by FISH, as even the smallest MYC 
subclone, which initially are lowly abundant, have the potential to expand into the 
dominant clone during relapse. MYC amplification may drive disease progression and 
contribute to therapy resistance and relapse. Such a pattern of MYC dominance in 
subclonal evolution was observed in other tumors including gliomas30, suggesting that 
our results may be relevant also to other tumor entities associated with MYC 
oncogenesis. 
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Extended Data Figures 
 
Extended Data Figure 1 
 

 
 
 
Extended Data Figure 1. Group 3/4 Medulloblastoma single nuclei RNA and ATAC profile properties. a) 
UMAP of snRNA-seq merged dataset with MB groups annotation. Non-tumor cells marked. Feature plots showing 
b) SNCAIP, c) PTPRC, d) IGFBP7 and e) AQP4 and expression within UMAP of merged snRNA-seq dataset. f) 
UMAP of snATAC-seq merged dataset with medulloblastoma groups annotated. Green box, normal cells. f) UMAP 
of snATAC-seq merged dataset with medulloblastoma subgroups annotated.  
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Extended Data Figure 2 
 

 
 
Extended Data Figure 2. Copy number profiling of single nuclei profiles from Group 3/4 MYC- and MYCN-
amplified samples. a) Copy number profiles of snRNA-seq data from MYCN samples (n=4). b) Per cell GSVA 
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enrichment of proliferation markers within UMAP of MB183 MYCN-amplified sample. c) Differentiation signal 
compared to ranked MYCN expression within MYCN-amplified subclone in sample MB183. MYCN normalized 
expression cutoffs: low = zero, intermediate > 0 and < 2, high > 2. d) Boxplots showing difference in mean signal 
of progenitor-like activity (left side) and differentiation (right side) between MYCN-amplified and non-MYCN-
amplified subclones in n=4 tumor cases. e) Copy number profiles of snATAC-seq data from MYC samples (n=6). 
f) Per cell GSVA enrichment of proliferation markers within UMAP of MB89 MYC-amplified sample. g) 
Differentiation signal compared to ranked MYC expression within MYC-specific sublclone in sample MB89. MYC 
normalized expression cutoffs: low = zero, intermediate > 0 and < 2, high > 2. h) Boxplots showing difference in 
mean signal of progenitor-like activity (left side, t-test p-val: 0.003) and differentiation (right side) between MYC-
amplified and non-MYC-amplified subclones in n=6 tumor cases. 
 
 
 
 
 
 
 
Extended Data Figure 3 
 
 

 
 
Extended Data Figure 3. Copy number profiling of single nuclei profiles from Group 3/4 PRDM6 samples. 
a) Copy number profiles of snATAC-seq data from PRDM6 samples (n=3). b) Per cell GSVA enrichment of 
proliferation markers within UMAP of MB249 PRDM6 sample. c) Boxplots showing difference in mean signal of 
progenitor-like activity (left side) and differentiation (right side) between PRDM6- and non-PRDM6 subclones in 
n=3 tumor cases. 
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Extended Data Figure 4 
 

 
Extended Data Figure 4. Group 3/4 medulloblastoma somatic mutation profiles. a) Overview of 
medulloblastoma samples analyzed by bulk WGS and stratified by subgroup. b) Variant allele frequencies of SNVs 
detected in sample MB104 (G34_VIII) on disomic chromosomes. Green line, fitted density of clonal SNVs; dashed 
vertical line, true clonal VAF according to the sample purity (as estimated by ACEseq). c), SNV densities at MRCA 
stratified by subgroup (densities were quantified from 39 MB G3, 70 MB G4, 21 MB SHH INF, 36MB SHH CHL/AD, 
and 17 MB WNT; 4 MB SHH CHL/AD and 4 MB WNT stood out with clonal mutation densities between 0.7 and 
2.9 SNVs/Mb and are not shown). Mean and 95% CI, estimated by bootstrapping the genomic segments 1,000 
times. d) Mean SNV densities at MRCA versus age at diagnosis across groups (n = 175 cases with age 
information). e) Mean SNV densities at MRCA vs age at diagnosis across G3/4 subgroups (n = 106 cases with age 
information). f) Population genetics model of tumors initiation in two steps of clonal selection. Cells in the tissue of 
origin divide at rate l and differentiate at rate d. The tissue initially expands until time T and thereafter contracts. 
Somatic variants are acquired at rate µl and driver mutations are acquired at rate µ1l and µ2l, respectively. The 
latter decrease the differentiation rate by a factor 1/r and 1/s, respectively. g) One-dimensional and two-dimensional 
posterior probabilities for the model fit to all G3/4 MBs (n = 109). < µ1, µ1> denotes the geometric mean of the driver 
mutation rate. h) Percentage of tumors with copy number gains and losses ≥1Mb along the genome. Red, Regions 
where CNVs were significantly more frequent than expected, according to a Binomial test with padj < 0.01; Holm 
correction for multiple sampling.  
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Extended Data Figure 5 

 
 
Extended Data Figure 5. Spatial resolution of sub-clonal tumor populations. a) UMAP of spatial merged 
dataset with MB groups annotation. Normal cells marked. b) UMAP of spatial merged dataset with MB subgroups 
annotation. c-e) Feature plots showing c) AQP4, d) IGFBP7 and e) PTPRC expression within UMAP of merged 
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spatial dataset. f) Spatial gene expression of MKI67, EOMES, AQP4, IGFBP7 and PTPRC across samples. g) 
Spatial visualization of clones of PRDM6 sample in 2nd image fragment. h) PRDM6 and i) MKI67 spatial expression 
of sample in g. k) PRDM6 and l) MYCN spatial gene expression in image fragment of sample MB292.  
 
Extended Data Figure 6 

 
Extended Data Figure 6. Independent oncogene clones may co-occur in one tumor. a) CNV profile of MB272 
cases bulk methylation data. b) Per cell GSVA enrichments of proliferating, progenitor-like and differentiation in 
single sample MB272. Spatial expression of c) MYC, d) MYCN, e) CA10 and f) GABRA5 in sample MB272. g) 
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Proximity of each compartment to each other in sample MB272 spatial data. h) Negative correlation (R=-0.287, 
p=1.08e-09) between MYC and MYCN expression within medulloblastoma FFPE bulk RNA-seq cohort (n=435). i) 
CNV profile of bulk methylation data from a Group 3/4 tumor with amplifications of MYC and MYCN. j) Identification 
of MYC (left) and MYCN (right) signals in the same sample using IHC. k) CIBERSORT deconvolution results across 
subset of MYC/MYCN cases from medulloblastoma bulk FFPE RNA-seq cohort. MB272 single cell data with 
subclones annotation used as a reference, the data from control case is marked with c, target sample marked with 
asterisk. l) Identification of MYC (red) and MYCN (green) signals in the highlighted target Group 3/4 sample 
described in panel (k) using FISH. m) Kaplan–Meyer overall survival probability curves for medulloblastoma 
Subgroup V tumors with (red) and without (blue) MYC amplification as identified from bulk data CNV profiling. n) 
MYC and o) MYCN expression in spatial transcriptomic relapse sample. 
 
 
Extended Data Tables 
 
Extended Data Table 1. Overview of target medulloblastoma Group 3/4 cohort with 
focus on snRNA-seq, snATAC-seq and single cell spatial transcriptomics data. 
 
Extended Data Table 2. Differentially expressed genes, specific for MYC, MYCN and 
PRDM6 subclones confirmed in minimum n=3 samples. 
 
Extended Data Table 3. Overview of target medulloblastoma ICGC cohort with focus 
on WGS data. 
 
Extended Data Table 4. List of 100 target genes applied for the spatial single cell 
protocol.  
 
Extended Data Table 5. Quality control overview of spatial single cell data. 
 
Methods 
 
Target cohort selection and verification 
Target tumor tissue samples were collected from medulloblastoma global published materials (ICGC3, 
FFPE11 and INFORM31 cohorts) and are described further in Joshi et al bioRxiv. For each selected case 
the copy number/structural variant profiles from methylation and/or whole genome sequencing data 
were used to identify MYC/MYCN amplification and SNCAIP structural variant presence. Bulk gene 
expression RNA-seq profiles from these samples were used to inspect MYC/MYCN/SNCAIP/PRDM6 
expression as well. For some cases with sufficient available FFPE material, additional FISH 
experiments were performed to verify the selection (details in Extended Data Table 1). No statistical 
methods were used to predetermine sample size.  
 
Single-nuclei multi-omics sequencing 
Flash frozen tumor samples were processed to extract nuclei as described earlier23, and described in 
detail in Joshi et al bioRxiv. Extracted nuclei were processed using Chromium Single Cell Multiome 
ATAC Gene expression kit and Chromium Controller instrument (10x genomics) as per manufacturer’s 
recommendations. One sample, MB248, was processed with Chromium Next GEM Single Cell 3’ 
reagent kit as per manufacturer’s recommendation. 15,000-20,000 nuclei were loaded per channel 
along with the multiome gel bead. Libraries were quantified using Qubit Flurometer (Thermo Fisher 
Scientific) and profiled using Fragment Analyzer. GEX and ATAC libraries were sequenced using 
NextSeq2000 to recommended lengths. If ATAC library was not of good quality, we still used obtained 
RNA library if that was found to be appropriate based on QC parameters. RNA-seq and ATAC-seq 
datasets were further analyzed separately. 
 
Single nuclei RNA sequencing data analysis 
De-multiplexed reads were aligned to human genome assembly GRCh38 (v. p13, release 37, 
gencodegenes.org). Comprehensive gene annotation (PRI) was customized by filtering to transcripts 
with following biotype: protein coding, lncRNA, IG and TR gene and pseudogene as recommended for 
cellranger mkgtf wrapper. Reads were aligned using STARsolo with parameters: --soloType 
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CB_UMI_Simple --soloFeatures Gene GeneFull --soloUMIfiltering MultiGeneUMI --
soloCBmatchWLtype 1MM_multi_pseudocounts --soloCellFilter None --outSAMmultNmax 1 --
limitSjdbInsertNsj 1500000. For overlapping genes where intronic alignment recovered low counts, 
exonic alignment counts were used. Cells were separated from debris using diem pipeline32. Cells with 
mitochondria fraction above 2%, number of detected genes above 6600 and an intronic fraction (number 
of reads aligned to intron/total number of reads aligned to exon+intron) less than 25% were also filtered 
out. Filtered cells were corrected for background signature using SoupX pipeline33. Finally scrublet34 
tool was used to remove putative doublets. Further the gene expression matrices from all samples were 
merged together in full matrix and processed via Seurat package35 to normalize, compute top principal 
complements (n=30), find most highly variable genes (n=2500) and visualize via UMAP. After 
distinguishing non-tumor cells based on corresponding markers and combined UMAPs, per sample 
processing was performed using Seurat toolkit using same settings combined with cells clustering. The 
enrichment of proliferation, differentiation and progenitor-like activity of medulloblastoma-specific 
markers per cell was performed using single sample function from GSVA R package36 using two 
independent reference datasets6,7. 
 
Single nuclei ATAC sequencing data analysis 
ATAC reads were aligned to GRCh38 using Cellranger arc wrapper. The selected cells were processed 
using Signac R package37 to filter the doublets/outliers based on signal per cell distribution analysis and 
inspect the cell compartments via UMAP visualization after normalization and identification of most 
highly-variable regions. Single nuclei derived RNA-seq data information was used to annotate the cells 
from corresponding processed data. 
 
Single cell CNV phylogeny reconstruction 
Before CNV analysis transferring of single cells into meta-cells was performed by computing sum of 
gene expression counts across n=5 cells combined within the clusters derived from initial Seurat 
processing in order to improve the specificity. For snRNA-seq data all filtered genes were used as input 
matrix for InferCNV tool12 using droplet protocol adjusted parameters and hierarchical clustering to 
derive potential phylogeny. Normal cells identified previously were used as reference control for each 
sample. After CNV calling further the initial clustering, MYC/MYCN/PRDM6 expression as well as 
computed per cell progenitor-like activity enrichment values were used to finalize the derived phylogeny 
for each case from manual inspection. Differentially expressed genes for identified subclones per 
sample were computed via Wilcoxon Rank Sum test. 
For snATAC-seq data a matrix with all genomic regions as raw and read counts per column per sample 
were used to adjust for InferCNV input format. Further meta-cells formation and same CNV calling 
procedure as for snRNA-seq were performed on the derived matrices. The subclone annotation derived 
from snRNA-seq data was used to assign corresponding clusters phylogeny per sample. 
 
Molecular Cartography (MC) 
Specific gene set (n=100) covering Group 3/4 known driver genes alongside marker genes of the 
developing cerebellum non-malignant cell types was selected for the protocol (Supplementary Table 
4). OCT-embedded samples were cryo-sectioned into 10 µm sections onto an MC slide. Fixation, 
permeabilization, hybridization and automated fluorescence microscopy imaging were performed 
according to the manufacturer’s protocol (Molecular preparation of human brain (beta), Molecular 
coloring, workflow setup) as described previously38. 
 
Spatial data analysis 
The detection of cell boundaries was performed with CellPose39. Afterwards, gene expression counts 
were computed per cell and extracted using additional custom Python scripts. Initial cells filtering was 
performed by assigning minimum number of counts/genes per cell and size of the cells. Afterwards, the 
analysis of the formed gene expression matrix, including clustering and UMAP visualization, was 
executed using the Seurat toolkit35. Annotation of cell states and types was achieved through direct 
projection with the snRNA-seq data via transfer function and verified from visual inspection of marker 
genes. Spatial-specific analysis, the detection of closest cell connections, was conducted using the 
Giotto toolkit40. 
 
Deconvolution analysis of MYC/MYCN cases 
The assigned MYC/MYCN single cell dataset (MB272) with annotation of compartments was used as 
reference control for the CIBERSORT method41 in order to perform deconvolution on a set of bulk FFPE 
medulloblastoma RNA-seq profiles from MYC/MYCN samples11. For each case, MYC/MYCN status 
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was derived from methylation copy number profile. The obtained deconvolution values were visualized 
via ComplexHeatmap R package to correspond compartment enrichments per sample to MYC and 
MYCN status. 
Survival analyses based on the expression of MYC as well as computed deconvolution MYC 
compartment proportion multiple genes were performed using Kaplan-Meyer algorithm with applied 
Bonferroni correction for multiple testing. The result plots were generated via R2 Genomics Analysis 
and Visualization Platform (http://r2.amc.nl). 
 
Whole genome sequencing data 
Mutation calls (SNVs, indels, CNVs and SVs) of previously published whole genome sequencing data 
from medulloblastoma of all subtypes were taken from ICGC dataset3. Only samples from primary 
tumors with clear subtype annotation and clear ploidy status were included; see Extended Data Table 
3 for an overview on these samples and associated clinical data.  
 
Driver mutations (SNVs and CNVs) 
Nonsynonymous SNVs, small indels and small structural rearrangements (amplifications, defined as 
copy number gains ≥10, homozygous deletions with <0.9 copy numbers, and translocations with a 
minimal event score of 5) were classified as driver mutations if they targeted a splice-site or an exonic 
region of PRDM6, MYC, or a gene listed as a putative driver of medulloblastoma in the cancer driver 
database intogen42 (release date 23/05/31). Moreover, we included TERT promoter mutations at hg19 
positions 1295228 and 1295250 as drivers. High-level amplifications affecting MYC or MYCN (identified 
from methylation/WGS copy number profiles) and duplications of SNCAIP, leading to overexpression 
of PRDM6 (identified from WGS SV calling) were additionally integrated from previous global data 
analysis3. 
Large-scale copy number variants (CNVs) were defined as CNVs spanning at least 1Mb and with a 
coverage ratio < 0.9 or a coverage ratio > 1.1, according to the output by ACEseq. Retained CNVs with 
a size of at least 25% the size of the p arm of a respective chromosome were further classified as 
affecting both arms if the CNV spanned the centromere, and else as affecting the p arm or q arm. 
Among these CNVs, we tested for positive enrichment of particular chromosomes in the cohort using a 
binomial test with success probability 1/24 (i.e., assuming that each chromosome has equal probability 
to be affected by the CNV). Chromosomes with an adjusted p value < 0.05 (Holm’s correction) were 
classified as likely drivers of medulloblastoma. This analysis was separately performed for gained and 
lost chromosomes. Among G3/4 medulloblastomas, we identified gains of Chromosome 4, 7/7q, 12, 
17/17q and losses of Chromosome 8, 10/10q, 11 as significant. We augmented this list by gains of 
Chromosome 18, 1q and loss of 5q as was reported previously43.  
 
Timing of CNVs, ECA and MRCA 
Quantification of mutation densities at copy number gains was performed using the R package 
“NBevolution” v0.0.0.9000, which is described in detail in corresponding study18. Briefly, we counted 
clonal mutations separately on each autosome, stratified by copy number state using the function 
count.clonal.mutations() with max.CN=4, excluding chromosomal segments with length <107 bp. 
count.clonal.mutations() fits a Binomial mixture model with success probabilities according to the 
expected mean values of the clonal VAF peaks, which, for an impure sample with tumor cell content 𝜌, 
are given by 
 
 VAFs ∈#$

%
, (CN())$

%
, )$
%
+,      

    (1) 
 
where CN denotes the copy number of a given segment, b denotes the number of B alleles on this 
segment, and  
 
𝜁 = 𝜌CN+ 2(1 − 𝜌)      
     (2) 
 
is the average copy number of a given locus in the sample. Mutation densities (SSNVs/bp) at MRCA 
and ECA, denoted by 𝑚3MRCA and 𝑚3ECA respectively, were computed using the function 
MRCA.ECA.quantification(). In brief, MRCA.ECA.quantification() first estimates 𝑚3MRCA from the number 
of all clonal mutations and the total size of the analyzed genome, 𝑔 = ∑ 𝑔66 , where the index 𝑙 labels 
individual segments contributing to the analysis, yielding 
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𝑚3MRCA =
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:	CN9
	,     

   (3)   
where  𝑛C,6 denotes the number of 
mutations present on 𝑘 copies of the 𝑙-th segment. Moreover, MRCA.ECA.quantification() computes 
lower and upper 95%-confidence bounds for 𝑚3MRCA by bootstrapping the genomic segments 1000 
times. Next, MRCA.ECA.quantification() asks for evidence for an earlier common ancestor in the data. 
To this end, the function tests for each gained segment with a negative binomial distribution whether 
amplified clonal mutations agree with the mutation density at MRCA or whether they are significantly 
less frequent. According to the test result, each segment is either assigned to the MRCA or to an earlier 
time point. From the latter, MRCA.ECA.quantification() computes the mutation densities at the ECA as 
 

𝑚3ECA =
∑ 8@,9<8CN?@,99,EFGH,9	I	J.J;	

∑ :9,@<:9,CN?@9,EFGH,9	I	J.J;	
.     

    (4) 
 
Finally, MRCA.ECA.quantification() tests for each contributing segment with a negative binomial 
distribution whether its mutation density conforms to the ECA and, in analogy to 𝑚3MRCA , computes 
lower and upper 95%-confidence bounds by bootstrapping.  
Upon timing MRCA and ECA for each sample, we translated mutation densities into weeks post 
conception (p.c.) by inferring SSNV rates per diploid genome and embryonic day (𝜇𝜆), using the 
measured VAF distributions and age at diagnosis as outlined below in section ‘Real-time estimate of 
cell division rate’. As mutation calling was performed by comparing tumors against a matched blood 
control, mutation densities correlate with the time post gastrulation (at approximately 2 weeks after 
conception). Thus, the mutation density per haploid genome, 𝑚3 , relates to the time p.c. according to 
𝑚3(𝑡) = OP

Q
R

S.S×RUV
(𝑡 − 14	days). The estimated time of birth was taken as 38 weeks after gastrulation (40 

weeks p.c.). 
 
Timing of SNVs and small indels 
We classified single nucleotide variants and small indels as subclonal or clonal based on the number 
of variant reads, 𝑛var, the number of reference reads, 𝑛ref, tumor purity 𝜌 and copy number 𝑘. 
Specifically, mutations were classified as subclonal if the probability to sample at most 𝑛var variant reads 
out of 𝑛var + 𝑛ref total reads according to a binomial distribution with success probability $

$C<\(R($)
 was 

smaller than 5%. If a mutation was classified as clonal and fell on a region with 𝑘 = 3, we moreover 
classified the mutation as early clonal (i.e., acquired prior to the chromosomal gain on the gained 
chromosome and hence present on two copies) if the probability to sample at most 𝑛var variant reads 
out of 𝑛var + 𝑛ref total reads was at least 5% according to a binomial distribution with success probability 

\$
$C<\(R($)

. If a mutation was classified as clonal and fell on a region with 𝑘 > 3, we classified the mutation 
as late clonal (i.e., acquired after the chromosomal gain and hence present on a single copy only) if the 
probability to sample sample at most 𝑛var variant reads out of 𝑛var + 𝑛ref total reads was smaller than 
5% according to a binomial distribution with success probability \$

$C<\(R($)
, and else as early clonal 

(acquired prior to the chromosomal gain and hence present on two copies).  
 
Modeling medulloblastoma initiation  
We modeled medulloblastoma initiation and growth with a population-genetics model originally 
developed for neuroblastoma, as described previously18. In brief, the model assumes that disease 
initiation is driven by 2 consecutive drivers in a transiently expanding tissue of origin, which for G3/4 
medulloblastoma is likely the population of differentiating unipolar brush cells (UBCs)19-21 . The two 
driver events are associated with the ECA and the MRCA of the tumor, and spawn, respectively, a pre-
malignant and the malignant tumor clone. We assumed that both drivers occur with small probabilities 
𝜇R and 𝜇\ during cell divisions, and confer a selective advantage (𝑟 and 𝑠, respectively), that acts by 
reducing cell differentiation. Moreover, we assumed that UBCs acquire on average 𝜇 neutral somatic 
variants per cell division, which we modeled with a Poisson process. The population of UBCs has been 
experimentally described from week 9p.c. until the time of birth19,23. To capture this trend, we modeled 
an initial phase of exponential growth at rate 𝜆R − 𝛿R,𝜆R > 𝛿R until time 𝑇, where 𝜆R and 𝛿R denote the 
division and differentiation rate, respectively, and a subsequent phase of exponential decline at rate 
𝜆\ − 𝛿\,𝜆\ < 𝛿\. 
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Following Körber et al.18,44, we calculated the probability of the MRCA to occur at time t according to 
 
 

𝑃efgh = i
𝑃efgh,j,												𝑡 < 𝑇

1 − k1 − 𝑃efgh,jlk1− 𝑃efgh,jjlk1 − 𝑃efgh,jjjl,			𝑡 ≥ 𝑇,      (5) 

 
with40 
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where 𝐹 = ∫ 𝜈\,�	/k𝜈\,�𝑧�l

R
U 𝑑𝑧 and 𝛼 = ~;(�P;

~;(P;
. Moreover, we calculated the probability of the ECA to 

occur at 𝑡R, conditioned on the MRCA occurring at 𝑡\, as described previously18 
 

𝑃(𝑡R|𝑡\) =
𝑡R
𝑡\
;	𝑡R < 𝑡\ ≤ 𝑇,			 

and 

𝑃(𝑡R|𝑡\) =
�(r(t;)P;~q{R(

;
��t;<�(t;(r)�Pq<P;r~q(R(R/�)(Pq�
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Pq<P;r~q(R(R/�)(Pq�vq(;?;/�)(�?�q)
;	𝑡\ > 𝑇,  

 
(6) 
 
where Θ(∙) is the Heavyside step function and 0 ≤ 𝑡R < 𝑡\. 
 
To estimate the model parameters from the WGS data, we contrasted the probability of acquiring the 
first and second driver with the measured distribution of SNV densities at ECA and MRCA in G3/4 MBs 
using Approximate Bayesian Computation with Sequential Monte-Carlo sampling (ABC-SMC) as 
implemented in pyABC45. We used a population size of 1,000 parameter sets and 25 SMC generations 
or 𝜀 ≤ 0.05 as termination criteria. The model fit was performed in analogy to Körber et al.18,44 (code 
and pseudo-code are available on https://github.com/kokonech/mbOncoAberrations). 95% posterior-
probability bounds for the model fits were estimated by simulating the model at each sampled parameter 
set and cutting off 2.5% at each end of the simulated distribution.  
 
Modeling medulloblastoma growth  
 
We modeled medulloblastoma growth from the MRCA as exponential growth with rate 𝜆r − 𝛿r, where 
𝜆r denotes the division rate and 𝛿r the loss rate (due to differentiation or death) in the tumor. Assuming 
that neutral mutations are on average acquired at a rate 𝜇𝜆r𝑁r(𝑡) per haploid genome during tumor 
growth, the site frequency spectrum of neutral variants at 𝑡end is, on average46,  
 
𝑆C(𝑖, 𝜇) = ∫ 𝑃R,¦(

tend
U 𝜆r, 𝛿r, 𝑡end − 𝑡)𝜇𝑘𝜆r𝑁r(𝑡)𝑑𝑡,      

  (7) 
 
where k is the ploidy,  𝑃R,¦(𝜆r, 𝛿r, 𝑡end − 𝑡) is the 
probability to grow from a single cell to a clone of size i within a time span 𝑡end − 𝑡, according to a birth-
death process (see for example here47).  
In order to estimate 𝜇 and 𝛿r/𝜆r from the WGS data, we followed the strategy described previously18 
to compared the cumulative variant allele frequency histogram  
 
∑ 𝑆C(𝑖, 𝜇) ≈)
¦z¨ ∫ 𝜇𝑘𝜆r𝑁r(𝑡)

©;,@(P�,~�,tend(t)(©;,ª(P�,~�,tend(t)

«¬­ ®(tend(t)
𝑑𝑡tend

U ,       (8) 
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1. between model and data. To this end, we used ABC-SMC45 with a population size of 1,000 
parameter sets and 25 generations or 𝜀 ≤ 0.05 as termination criteria. To learn the dynamics 
of tumor growth with confidence, we included tumors with well-defined subclonal tails and no 
evidence for subclonal selection. Tumors were selected (Extended Data Table 3) based on 
visual inspection of the VAF histograms, to remove cases with poor subclonal resolution. In 
addition, we removed cases with evidence for subclonal selection as suggested by the 
evolutionary model implemented in Mobster48 (setting autosetup = “FAST”), which we ran on 
autosomes and upon computing pseudo-heterozygous VAFs, VAF̄, defined as 50% of the 
mutant sample fraction, SF (hence VAF̄ = %

 2C
VAF, where 𝑘 is the number of alleles carrying the 

mutation). For the 39 retained G3/4 medulloblastomas, we followed the strategy outlined in 
Körber et al.18,44 to estimate the model parameters from the measured VAF distribution (code 
and pseudo-code are available on https://github.com/kokonech/mbOncoAberrations ).  
 

 
Real-time estimate of cell division rate 
From the model fits of medulloblastoma initiation and growth to WGS data, we estimated 
differentiation/loss rates and mutation rates relative to the rate of cell divisions. To convert these 
estimates into real-time, we used the age distribution at diagnosis for calibration. In a first step, we 
estimated the cell division rate of UBCs, 𝜆, from the number of generations between gastrulation and 
MRCA plus the number of generations between MRCA and diagnosis (tD), which can be inferred from 
the mutational burden in the tumor18. With 𝜆r = 𝑠𝜆, this yields 
 

𝜆 = R
tD
p³3MRCA

O
+ «¬­sT(tD)

R(v�´w
y = R

tD
{³3MRCA

O
+ «¬­sT(tD)

O
𝜇eff�,     

 (9) 
 
where we used the estimate for 𝜇 from the parameter inference for medulloblastoma initiation and the 
estimate for the effective mutation rate, 𝜇eff =

O

R(v�´w
, from the parameter inference for medulloblastoma 

growth. Assuming a tumor mass in the order of a few cubic centimeters and hence 𝑁µ(𝑡D) = 109 cells, 
and defining 𝑡D as the age at diagnosis, A, plus, on average, 250 days of embryogenesis after 
gastrulation, we obtained for each tumor (labeled with index i) an estimate for the division rate with 
mean, 〈𝜆¦〉 =

R
\〈O〉(¸¹<\ºU	days)

k〈2𝑚3MRCA,i〉 + log 10¾ 〈𝜇eff,i〉l, and standard deviation, 𝜎(𝜆¦) =

R
\〈O〉(¸¹<\ºU	days)

p\
〈³3MRCA,i〉<«¬­ RUV〈Oeff,i〉

\〈O〉
𝜎〈2𝜇〉 + 𝜎k2𝑚3MRCA,il + 𝜎k𝜇eff,ily, in actual time (where the factor 2 

accounts for the fact that 𝜇 and 𝑚3MRCA,i measure the mutation rate and the mutation density, 
respectively, per haploid genome).  
Finally, we computed the mutation rate per day during tumor initiation, by computing 𝜇𝜆µ,À, with 
associated uncertainty 𝜇Δ𝜆µ,À + 𝜆µ,Àσ(µ), which relates molecular clock to real time. For this purpose, we 
average across the inferences from all tumors that went into the analysis. 
 
Data availability 
The DNA whole genome sequencing mutation results were integrated from the corresponding 
medulloblastoma molecular landscape study3 deposited at European Genome-Phenome Archive under 
accession number EGAS00001001953. Single nuclei RNA and ATAC data and quality controls 
published in Joshi et al bioRxiv and are available at GEO database under the accession 
numbers GSE253557 and GSE253573 accordingly. All raw images and processed data after cell 
segmentation from spatial transcriptomics experiments available at GEO database and can be 
accessed under the accession number GSE252090.  
 
Source code 
All custom Python/R scripts as well as details about external software environment applied during the 
data analysis are shared via public github repository: https://github.com/kokonech/mbOncoAberrations  
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