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Introduction
	 Scarcity of accurate models of medulloblastoma, a 
highly heterogeneous and malignant childhood tumor 
group arising in the cerebellum (1-3), has hindered the 
development of effective mechanism-of-action-based 
treatment strategies. Advances in molecular profiling 
in the last decade have characterized medulloblastoma 
into four major subgroups: WNT, SHH, Group 3 and 
Group 4 (4). Group 3 and 4 medulloblastomas (hereafter 
referred together as Group 3/4 tumors), which are further 
categorized into eight molecular subtypes (I-VIII) 

encompassing pure Group 3 (II, III, IV), mixed (I, V, VII), 
to pure Group 4 (VI, VIII) tumors (5), together represent 
the most common and lethal cohort. Despite their 
prevalence, our knowledge of the tumor heterogeneity 
and underlying regulatory networks in Group 3/4 tumors 
is limited, and this lack of understanding has hampered 
the development of mechanism-of-action-based therapies 
that could improve patient survival at lower rates of 
collateral damage (6).
	 Recent transcriptomic studies comparing Group 3/4 
tumor gene expression programs to those of developing 

Abstract
Resolving the molecular mechanisms driving childhood brain tumors will uncover tumor-specific 
vulnerabilities and advance mechanism-of-action-based therapies.  Here we describe a continuum 
of cell-states in Group 3/4 medulloblastomas, the most frequent and fatal cerebellar embryonal 
tumor subgroups, based on the differential activity of transcription-factor-driven gene networks 
derived using a comprehensive single-nucleus multi-omic medulloblastoma atlas. We show that 
Group 3/4 tumor diversity stems from enriched cell-states along four molecular identity axes: 
photoreceptor, MYC, precursor, and unipolar brush cell-like.  We identified a potential role of PAX6 
in driving dual Group 3- and Group 4-like tumor trajectories in subtype VII tumors. Our study 
demonstrates how oncogenic events together with lineage determinants drive Group 3/4 tumor 
identity away from their original source in the cerebellar unipolar brush cell lineage.
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human cerebellum have hinted that these tumors likely 
arise from upper rhombic lip-derived unipolar brush cell 
(UBC) progenitors (7-9). However, it is still unclear how 
the heterogeneous Group 3/4 biology can be derived 
from and explained by the linear UBC differentiation 
process, and which regulatory networks drive malignant 
transformation. In this study, we generated and analyzed 
single-nucleus multi-omic data of 38 Group 3/4 
medulloblastoma samples to provide unparalleled insight 
into the molecular mechanisms explaining similarities 
and differences within Group 3/4 medulloblastoma. We 
focused on differential activity of transcription-factor 
regulated gene regulatory networks (TF-GRNs), a set of 
genes comprising putative downstream targets of the TF 
along with the TF itself, and identified four molecular axes 
of identity of Group 3/4 medulloblastoma development. 
We show that the spectrum of Group 3/4 subtypes can 
be attributed to the continuum of cell-states along these 
axes, which are connected through a shared regulatory 
landscape. We further identified that the intermediate 
nature of subtype VII tumors is due to the co-existence of 
Group 3- and Group 4-like tumor trajectories arising from 
bi-potent precursor cells in single tumors. Our findings 
provide the mechanistic framework to explain Group 3/4 
medulloblastoma biology in the context of its normal 
developmental origin, opening new avenues to explore 
and test novel medulloblastoma treatment strategies and 
to faithfully model the different disease subtypes.

RESULTS
Group 3/4 medulloblastoma multi-omic atlas
	 Group 3/4 medulloblastomas appear as a separable, 
yet continuous group of tumors when their transcriptomic 
programs (bulk RNA-Seq samples, Fig. 1A; Fig. S1A-C; 
Table S1) (8, 10-14) are visualized in a low dimensional 
space, such as tSNE (t-distributed Stochastic Neighbor 
Embedding) or UMAP (Uniform Manifold Approximation 
and Projection). This result suggests the existence of a 
gradient of biology that connects their distinct molecular 
characteristics. Consequently, subtype-specific metagene 
programs are also enriched in other subtypes of the same 
subgroup (Fig. 1B; Fig. S1D-G; Table S2). For example, 
Group 4 subtypes VI, VII and VIII demonstrate enrichment 
of the same signature, Sig_g (Fig. 1B). These observations 
align with the previously proposed model that places 
the continuum of medulloblastoma biology on a bipolar 
Group 3 vs Group 4 axis (Fig. S1D) (10). However, 
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using diffusion trajectory analysis to identify potential 
directions of the metagene programs, we discerned that 
both Group 3 and Group 4 subtypes have their own linear 
axis of separation (Fig. 1C; Fig. S1H-J), suggesting that a 
multi-axial spectrum exists within Group 3/4 biology.
	 We hypothesized that the conserved biology across 
closer subtypes is driven by the same underlying molecular 
programs, as defined by TF-GRNs, while separable 
subtypes are regulated by distinct TF-GRNs. To determine 
the molecular programs that define this multi-axial tumor 
biology, we generated multi-omic single-nucleus (inter-
changeable with “single-cell” for simplicity) data for a 
cohort of 38 Group 3/4 patient samples encompassing 
all eight Group 3/4 molecular subtypes (total nuclei = 
355,295; total samples = 38: 32 samples with both RNA 
and ATAC profiles from same nuclei, 1 sample with 
both RNA and ATAC profiles from different nuclei, 5 
samples with RNA profiles only; Fig. 1D-G; Fig. S2A-H; 
Fig. S3A-F; Table S3). Expectedly, transcriptomic and 
chromatin accessibility profiles showed sample-specific 
cell-clusters (Fig. S2E; Fig. S3F), with samples from the 
same molecular subtype located closer on the UMAP 
(Fig. 1F). 
	 To integrate the tumor data such that tumor cells 
exhibiting similar molecular biology, but distinct levels 
of gene expression, cluster together, we transformed 
gene expression data into molecular program enrichment 
profiles. We focused on TFs with highly variable expression 
in our tumor atlas, to obtain the TF-GRN sets driving 
inter-tumor heterogeneity and continuity across Group 
3/4 tumors, and employed a two-step approach. Firstly, 
for each of the above identified TFs, we defined a TF-
GRN in a tumor sample using SCENIC+ based analysis 
(15), by identifying genes with correlated expression to 
that TF and filtering for targets with putative binding sites 
for the candidate TF in target-associated cis-regulatory 
elements (CREs). We then converted the gene expression 
matrix into TF-GRN score matrix using AUCell (16), 
and obtained TF-GRNs that are differentially active in 
the tumor clusters of the sample. Secondly, to integrate 
the multi-omic data, we selected TFs associated with 
intra-tumor heterogeneity across multiple samples and 
obtained a conserved TF-GRN for each of the selected 
TFs based on recurrent TF-target associations. We then 
obtained TF-GRN scores for each of the selected TFs in 
the tumor cells of the integrated data and used this TF-
GRN score matrix for further analysis, such as to generate 
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Fig. 1. Overlapping heterogeneity defines the molecular continuity among G3/4 medulloblastoma.
A. UMAP distribution of Group 3/4 medulloblastoma (n=703, bulk-RNA-Seq) samples on the transcriptomic landscape colored by 
subtype identity. B. Spider plot of scaled enrichment of metagene signatures across subtypes. C. Diffusion trajectory of Group 3/4 
tumors on the transcriptomic landscape. Gradient of subtype identity along the Group 3 and Group 4 axes is shown by dotted lines. 
D. Experimental design for generating single-nucleus multi-omic data from patient-derived tumor samples. E. Sample metadata of 
our Group 3/4 medulloblastoma single-nucleus multi-omic study cohort. F, female. M, male. F. UMAP distribution of snRNA-Seq 
(left) and snATAC-Seq (right) data colored by subtype identity. Non-neuronal cells are encircled. G. Graphical summary of data 
modalities of single-nuclei comprising the Group 3/4 multi-omic atlas. snATAC-Seq nuclei from MB248 (n=3,194 nuclei) are 
excluded in the chart. H. Graphical representation of SCENIC+ based TF-GRN approach to integrate snRNA-Seq and snATAC-
Seq data for the identification of the regulatory signatures driving intra-tumor heterogeneity. Conserved TF-GRNs across samples 
provide insights into the continuous heterogeneity observed within Group 3/4 medulloblastoma.
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an integrated TF-GRN enrichment map (Fig. 1H and see 
Methods for additional details).

Gene regulatory networks driving Group 3/4 identity 
	 Using scaled enrichment of area under the curve 
(AUC) scores for a set of TF-GRNs (n=108, Table S4) 
selected from TF-GRNs active across tumor samples, 
we integrated tumor cells based on their shared biology 
(Fig. 2A,B; Fig. S4A-H). This integrated tumor cell 
atlas displayed four axes on the diffusion map, which 
we labeled as photoreceptor-like (PRt, t=tumor), MYC-
enriched, Precursor-like and UBC-like (UBCt, t=tumor), 
based on the known function of associated TFs and the 
enrichment of molecular programs in the annotated cells, 
as described below. Cells belonging to Group 3 vs Group 
4 tumors differentially contributed to these four axes (Fig. 
2B). 
	 To further molecularly define these four axes, we 
first clustered the tumor cells (Fig. S4B) and identified 
the TF-GRNs enriched in each cluster. We grouped the 
identified 108 TF-GRNs into nine groups by hierarchical 
clustering to identify co-enriched programs (Fig. 2C; Fig. 
S5A-L; Table S4). TF-GRN programs 1 (representative 
GRN: gNR3C1), 2 (gCRX) and 3 (gCREB5) included 
well-known regulators of the photoreceptor lineage 
(17) (Fig. S5D-F; Fig. S6A-G). TF-GRN programs 4 
(gMYC) and 5 (gFOXN4) were enriched for cell-cycle 
and progenitor- associated TFs (Fig. S5G,H) (18, 19). 
Similarly, TF-GRN programs 6 (gEOMES), 7 (gOTX2), 8 
(gLHX1) and 9 (gALX1) included well-known regulators 
of early and late UBC development (Fig. S5I-L) (20, 
21). Using hierarchical clustering, we grouped tumor 

clusters exhibiting similar program enrichment along the 
identified axes and subdivided these groups into tumor 
cell-states based on co-enrichment of molecular programs 
defining more than one axis (Fig. 2D; Fig. S7A-K; Table 
S5). For example, while all clusters in the MYC axis 
were enriched for TF-GRN program 4, tumor cells in 
the MYC_CC states were also co-enriched for TF-GRN 
program 5 (Cell cycle), the TF-GRN program these cells 
share with the cell cycling Precursor states (Prec_CC). 
We also investigated the differential enrichment of CREs 
associated with these TF-GRNs, which showed similar 
enrichment profiles (Fig. 2E). TF-GRNs and associated 
open chromatin regions mostly showed co-enrichment 
patterns, except in tumors cells along the PRt-axis, where 
progenitor-like programs (4 and 5) were turned down 
while the associated CREs remained comparatively 
accessible as in undifferentiated MYC-axis clusters (Fig. 
2D,E), a phenomenon shared with normal human rod 
photoreceptors (Fig. S6F,G). 
	 We observed that the tumor cells’ subgroup and 
subtype identity was also distinctively associated with 
the four axes. PRt and MYC axes were almost uniquely 
populated by tumor cells from Group 3 samples, while the 
Precursor and UBCt axes were predominantly populated 
by tumor cells from Group 4 samples (Fig. 2F). At the 
subtype level, subtypes III and IV exhibited PRt axis cell-
states, while subtype II was enriched in the MYC axis 
(Fig. 2F). Group 4 associated subtypes, VI and VIII, 
showed almost exclusive association with Precursor and 
UBCt states. Interestingly, subtypes I, V and VII, which 
have intermediate Group 3/4 identity, were distributed 
across the four axes.
	 Group 3/4 tumors originate from the cerebellar 
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Fig. 2. Four axes of Group 3/4 medulloblastoma identity.
A. 3D diffusion map of Group 3/4 tumor cells obtained from TF-GRN enrichment colored by axial identity. Dotted line indicate 
axial trajectories. B. 3D diffusion map of Group 3/4 tumor cells colored by group identity. C. Hierarchical clustering of the 108 
TF-GRNs based on co-enrichment in tumor clusters. D. Differential enrichment of TF-GRN score across tumor cell-clusters in 
the integrated data. E. Differential enrichment of activity of constituent CREs of the TF-GRN-sets across cell-clusters in the 
integrated data. F. Subtype and subgroup identity of cells comprising the cell-cluster in the integrated atlas. Each bar represent 
a cluster’s proportional tumor subtype (top) or subgroup (bottom) composition. G. Enrichment of cell-state signatures in the 
cerebellar granule cell/unipolar brush cell lineage and retinal photoreceptor lineages in the cell-cluster of the integrated Group 3/4 
medulloblastoma atlas. UBCP cells were labelled as GCP/UBCP in the original atlas (20) but termed as UBCP here for simplicity. 
RL pro, rhombic-lip progenitor. GCP, granule cell progenitor. UBCP, UBC progenitor. UBC diff., differentiating UBC. UBC def., 
defined UBC. RPC, retinal progenitor. RGC, retinal ganglion cell. Imm. PR, immature photoreceptor. Cone PR, cone photorecep-
tor. Rod PR, rod photoreceptor. H. Marker gene expression distribution in the integrated atlas. Photoreceptor, progenitor or UBC 
cell-states marker genes are annotated as such. OTX2 (marked with asterisk) is a marker gene for both photoreceptor and UBC 
lineages. Dot size indicates the proportion of cells in a cluster expressing a gene, and color denotes mean expression scaled across 
cluster per gene.                                                                                                                                                     Fig. 2 next page ►
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◄ Fig. 2 legend previous page 
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Fig. 3. Mutually repressive PRt and UBCt associated TF-GRNs 
drive Group 3 and Group 4 identity apart
A. Pearson correlation analysis of TF-GRN activity in the inte-
grated single-cell tumor data. PRt, MYC and UBCt associated TF-
GRNs show high anti-correlation. Inset shows correlation between 
key GRNs: gNRL, gCRX, gOTX2, gEOMES and gLMX1A. 
Arrow shows putative direct interaction between TF pairs based 
on SCENIC+ analysis and arrow head denotes the target of the in-
teraction. B. H3K27ac ChIP-Seq (11) shows distinct enhancer sig-
nature enrichment at CRX, OTX2, and EOMES loci across Group 
3/4 subtypes. Subtypes are arranged from pure high PRt (top) to 
high Precursor (Prec.)/UBCt (bottom) phenotype. C. Integrated 
snATAC-Seq reveals differential accessibility of CREs at CRX, 
OTX2, and EOMES loci across Group 3/4 medulloblastoma axial 
identities (this study). ChIP-Seq peaks for OTX2, CRX (24) and 
EOMES (25) overlap CREs positively associated with expression 
of key genes: CRX (left), OTX2 (middle) and EOMES (right). 
Interaction arcs depict representative peak to gene links colored by 
correlation of peak accessibility and gene expression. Red boxes 
depict putative CREs involved in cross-regulations for each gene.                
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rhombic lip (7-9) and also show enrichment of photoreceptor 
programs (7, 9, 22). To identify the tumor cells resembling 
the cell-states in cerebellar rhombic lip or retinal lineage, 
we investigated the enrichment of these lineage programs 
(Table S6) in tumor clusters (Fig. 2G). Briefly, the PRt axis 
is linked to normal UBC progenitor and normal retinal 
photoreceptor program, while UBCt is characterized by 
an enrichment of normal differentiating and differentiated 
UBC programs, as well as the enrichment of normal retinal 
ganglion cell signature: a retinal lineage associated with 
EOMES expression (Fig. S6D) (23). The MYC axis showed 
enrichment of normal rhombic lip and granule cell progenitor 
(GCP) signatures. The Precursor axis showed enrichment of 
normal differentiating UBCs, with normal retinal progenitor 
signature enriched in cell cycling Precursors (Prec_CC). 
Expression patterns of marker genes of retinal photoreceptor 
(e.g. CRX, NRL), cell cycling progenitor (e.g. TOP2A) and 
cerebellar UBC lineage (e.g. EOMES, LMX1A) further 
validated our axial and cell-states annotation (Fig. 2H).
	 In summary, the differential TF-GRN activity enrichment 
map defines the continuum of biology of the eight subtypes 
of Group 3/4 medulloblastoma along the four axes of 
molecular identity.

Mutually repressive TF-GRN interactions drive Group 3 
versus Group 4 separation
	 To investigate the transition between the four axial 
identities, we investigated the correlation between the TF-
GRNs activity. We hypothesized that co-expressed TF-
GRNs will show high positive correlation, and mutually 
exclusive, potentially repressive interactions between TF-
GRNs will be negatively correlated (Fig. S8A). Broadly, 
PRt, MYC and UBCt associated TF-GRNs were negatively 
correlated, and Precursor and UBCt TF-GRNs were 
positively correlated (Fig. 3A). Particularly, gCRX/gNRL 
(PRt axis) and gEOMES/gLMX1A (Precursor/UBCt axis) 
were highly negatively correlated (Fig. 3A, inset). gMYC 
activity was likewise negatively correlated with gEOMES/
gLMX1A, and not-correlated to gCRX/gNRL (Fig. S8B). 
These anti-correlative relationships suggest a mutual 
exclusivity between PRt, MYC and UBCt axial identities: 
individual tumor cells cannot have two or more of these 
identities simultaneously.
	 We next focused on TF-GRNs that drive the PRt and 
UBCt separation. We hypothesized that this separation 
results from the mutual repression of TF-GRN programs 
associated with PRt and UBCt. To confirm direct regulatory 
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Fig. 4. Group 3/4 identity programs are enriched in distinct stages of the developing cerebellar UBC lineage.  
A. UMAP representation of cells in the human cerebellar UBC lineage (20) in the transcriptomic space. RL progenitor, rhombic-lip 
progenitor. UBCP, UBC progenitor. UBC diff., differentiating UBC. UBC def., defined UBC. B. Mapping of the UBC lineage cell-states 
in the fetal human cerebellum (12 pcw) by alignment of the multiplexed single-molecule fluorescent in situ hybridization FISH data with 
11 pcw snRNA-Seq data (20). Region of a coronal section containing the rhombic lip is shown. Top left: cell’s estimated rhombic-lip 
(RL) progenitor, UBC progenitor (UBCP), differentiating (diff.) or defined (def.) UBC cell-identity colored by state. Top right: DAPI-
stained section with the rhombic lip ventricular zone (RLvz; green) and sub-ventricular zone (RLSVZ; blue) highlighted. Bottom left: 
cell-label prediction score (scale capped at the 1st and 99th quantiles). Bottom right: Expression of key markers across the labelled 
segments. Dot size indicates the proportion of segments expressing a gene, and color shows the mean expression level normalized to 
segment area and scaled per gene. Scale bars, 250 µM. C. Cell-type density variations along predicted pseudotime within the UBC 
lineage. D. Differential enrichment of Group 3 vs Group 4 metagene signature (top); Group 3/4 axial identity signature (middle), and 
selected TF-GRNs activity (bottom) in the UBC lineage along pseudotime. E. Proposed model of Group 3/4 medulloblastoma identity 
bifurcation. Tumor cell-states derived before UBC identity specification drive Group 3 tumor identity. Tumor cells that turn on UBC 
specification program become Group 4 tumors.
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interactions between CRX/NRL and EOMES/LMX1A, the 
key TF regulators of PRt and UBCt states, respectively, 
we examined enhancer regions around CRX, NRL, OTX2, 
EOMES, and LMX1A gene loci using our snATAC-Seq 
atlas. By analyzing and overlaying co-localization of active 
enhancers (H3K27ac signal) in Group 3/4 tumors (11), 
accessibility of identified CREs (this study), and the binding 
sites of CRX and OTX2 in the human retina (24) and of 
EOMES in human embryonic stem cells (25), we identified 
potentially functional enhancers regulating cross-talk 
between these key TFs (Fig. 3B,C; Fig. S8C,D).
	 These findings suggest a mutual repression between 
CRX and EOMES, indicated by the potential binding of 
CRX and EOMES to each other’s functional enhancers and 
their anti-correlated gene expression (Fig. 3C). OTX2, on 
the other hand, potentially directly regulates expression of 
CRX/NRL and EOMES/LMX1A (Fig. 3A, inset). Altogether, 
these data suggest that the presence of OTX2 provides a 
permissive environment for tumor cells to differentiate along 
both the PRt and UBCt lineage, while the mutually repressive 
interaction between CRX/NRL and EOMES/LMX1A drives 
the trajectories apart.

The UBC lineage exhibits Group 3/4 specific programs at 
distinct time-points 
	 We (7) and others (8, 9) have previously shown that 
the Group 3/4 transcriptomic program is best matched to 
the UBC lineage of the developing human cerebellum. We 
hypothesized that if tumor cells are arrested in the cell-
state space of normal UBC development, the tumor axial 
or TF-GRN programs would be differentially enriched 
during normal UBC development, allowing us to determine 
the putative stages in which these tumor cells are arrested. 
Therefore, we extracted the cells belonging to the developing 
UBC lineage from our previously generated snRNA-Seq 
atlas of the developing human cerebellum (Fig. 4A) (20). 
We further estimated the spatial locations of the UBC cell-
states in the 12 post-conception week (PCW 12) human 
cerebellum based on our multiplexed single-molecule in 
situ hybridization dataset (Molecular Cartography, Resolve 
Biosciences) (Fig. 4B) (20). Investigating the differential 
enrichment of the identified gene-sets along the UBC lineage 
(Fig. 4C), we observed that a Group 3 specific metagene 
signature, PRt/MYC axial programs, and TF-GRNs driving 
PRt/MYC axial identities are enriched in rhombic lip or UBC 
progenitor cell-states (Fig. 4D; Fig. S9A-C). Conversely, a 
Group 4 specific metagene signature, Precursor/UBCt axial 

program, and TF-GRNs driving Precursor/UBCt tumor 
identities are enriched in differentiating and differentiated 
UBC (i.e. defined UBC) cell-states (Fig. 4D; Fig. S9A-C). 
Together, this nearly mutually exclusive enrichment pattern 
of Group 3 and Group 4 regulatory networks along the 
UBC lineage suggests that the coarse Group 3 vs Group 4 
separation occurs at the point of UBC identity specification 
(Fig. 4E). The spatial location of UBC progenitors and 
differentiating UBCs, in the rhombic lip sub-ventricular 
zone (RLSVZ), a region with proliferative capacity (8, 9), 
further confirms the source of Group 3/4 medulloblastomas 
in the cerebellar rhombic lip, as reported by others (8, 9).
	

PAX6 expression drives dual PRt-UBCt lineage identity in 
subtype VII tumors 
	 To investigate molecular drivers of Group 3/4 tumor 
identities, we extrapolated the TF-GRNs obtained from 
our single-cell multi-omic atlas to a larger bulk RNA-Seq 
dataset of Group 3/4 medulloblastoma samples (n=703) (8, 
10-14). We obtained the relative enrichment profiles of the 
above identified TF-GRNs in the tumor bulk transcriptomic 
data and observed a high correspondence between cell-state 
enrichment patterns across subtypes, similar to our mutli-
omic atlas results (Fig. S10A-H). tSNE analysis of the bulk 
data based on TF-GRN enrichment scores showed that 
Group 3/4 tumors can also be divided into four major axes 
at the bulk level that correlated with enrichment of specific 
axial signatures (Fig. 5A). 
	 Overlaying the status of common genetic driver events 
(8, 14) in Group 3/4 medulloblastomas suggested a causal 
relation between the driver event and the resultant phenotype 
(Fig. S10A-H). Briefly, predominantly MYC-driven subtype 
II tumors, with documented MYC amplification or PVT1-
MYC fusion (Fig. S10B,I) and high MYC expression (Fig. 
S10J), showed enrichment of the MYC and early PRt axial-
signature (Fig. S10B). SNCAIP duplication associated with 
PRDM6 activation (14) in subtypes VI, VII and VIII tumors 
drove tumors towards the UBCt axis (Fig. S10F-I). While 
GFI1B rearrangements were distributed across subtypes, 
GFI1B-driven subtype I and II tumors typically exhibited a 
mixed PRt-UBCt identity as observed from co-enrichment of 
associated TF-GRNs (Fig. S10A,B,I).
	 We next focused on intermediate Group 3/4 tumors, 
which primarily belonged to subtypes I, V and VII, and 
exhibited a lower Group 3/Group 4 classification score (Fig. 
5B; Fig. S10K,L). The intermediate identity of subtype V is 
possibly due to lack of enrichment of late-PRt or late-UBCt 
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TF-GRN programs (1-2 and 9, respectively) that defines 
either Group 3- or Group 4-like identity, respectively (Fig. 
S10E). Conversely, intermediate subtypes I and VII could be 
ascribed to the co-enrichment of PRt and UBCt associated 
TF-GRN programs (1-3 and 6-9, respectively) in the same 
tumor (Fig. S10A,G).
	 In the integrated multi-omic atlas, subtype VII tumor cells 
were distributed along the PRt-to-UBCt axis. We confirmed 
this observation using bulk RNA-Seq data, where ~31% 
(55/178) of subtype VII tumors exhibited co-enrichment of 
PRt and UBCt TF-GRN programs and ~7% (12/178) showed 
predominance of PRt TF-GRN programs (Fig. S10G). In 
bulk tumors, we identified that the TF PAX6, a key regulator 
in retinal and UBC lineage specification and differentiation 
(26, 27), was highly expressed in subtype VII tumors 
(Fig. 5C; Table S7; Table S8). Further, subtype VII tumors 
expressed the Group 3-associated CRX (Fig. 5C) and NRL 
(Fig. S11A) at significantly higher levels when compared 
to Group 4 subtypes (VI and VIII). On the other hand, 
they also expressed the Group 4-associated EOMES (Fig. 
5C) and LMX1A (Fig. S11A) at significantly higher levels 
when compared to pure Group 3 subtypes (II, III and IV). 
Therefore, the intermediate identities of subtype VII likely 
arise from this co-expression of TFs typically associated with 

core networks regulating tumor-cell specification along the 
PRt or UBCt axes, respectively. Increased PAX6 expression 
was also positively correlated to an increased proportion of 
Precursor and UBCt cell-states, suggesting that PAX6 drives 
tumor identity from the PRt axis towards the UBCt axis (Fig. 
5D; Fig. S11B-G). 
	 To investigate whether the intermediate Group 3/4 
identity arises from co-expression of dual lineage factors 
in the same cells or instead results from the presence of 
two distinct lineages in separate cells in the same tumor, 
we focused our analysis on three (out of six) subtype VII 
samples (MB26, MB292 and MB129, ICGC cohort) from 
our atlas that showed a co-enrichment of PRt and UBCt-
associated TF-GRN programs (1-3 and 6-9) (Fig. S12A). 
These samples also exhibited a distinct dual PRt (gCRX) 
and UBCt (gLHX1) trajectory arising from a common 
Precursor pool (gTBR1) in all the three samples (Fig. 5E,F; 
Fig. S12B-E). In all three samples, PAX6 expression and 
PAX6 motif enrichment was high in the Precursor cells 
and almost completely absent in the PRt tumor cells (Fig. 
5G; Fig. S12F,G). PAX6 expression further correlated to 
Precursor/UBCt markers and anti-correlated to PRt markers 
(Fig. S12H). Axial compartments in these tumors exhibited 
a mutually inverse enrichment of Group 3 (PRt cells) and 

Joshi, Stelzer, Okonechnikov et al. 

Fig. 5. PAX6 drives dual Group 3 and Group 4-like trajectory in subtype VII medulloblastomas. 
A. tSNE distribution of Group 3/4 medulloblastoma bulk-RNA-Seq samples (n=703) on the TF-GRN enrichment space. Relative 
enrichment of axial signatures (middle) and marker TF-GRNs (right) on the tSNE landscape. PRt, Photoreceptor (tumor)-like. Prec., 
Precursor. UBCt, UBC (tumor)-like. B. Intermediate methylation classification score (1- abs(G3 score- G4 score)) on the tSNE map. 
Dashed lines highlights presumptive separation among bulk axes. C Boxplot distribution of PAX6, CRX and EOMES expression in bulk 
RNA-Seq samples (n=703) across subtypes. Expression in individual samples is shown as dots. Asterisk denotes log-fold change > 1 and 
adjusted p-value < 0.001 for pairwise comparisons. Black, pair-wise comparisons to subtype VII tumors, Red, pair-wise comparisons 
to subtype I tumors. D. Predicted deconvoluted axial cell-state identity in subtype VII samples arranged in order of increasing UBCt 
identity (increasing gLHX-gCRX score). Each bar represents a sample’s proportional composition of tumor cell-states after removing 
predicted normal neuronal cell fraction. Middle panel shows gCRX and gLHX1 AUC scores per sample, and the bottom panel illustrates 
PAX6 (log2 counts per million) expression in each sample. Fitted linear model for PAX6 expression along the sample order: R2=0.1643. 
p-value =1.99e-08. E. UMAP distribution of a subtype VII tumor (MB129) cells in the TF-GRN space, annotated by axial identities. 
Panels on right show predicted diffusion pseudotime (top) and cell-cycle score (bottom). F. Scaled enrichment of marker TF-GRNs in 
MB129 tumor cells is shown on the UMAP. G. UMAP distribution of scaled PAX6 expression (top) and scaled PAX6 motif enrichment 
(bottom) in MB129 tumor cells. H. Relative enrichment of Group 3 and Group 4 metagene signature in MB129 tumor cells annotated 
with PRt, Precursor and UBCt axial identity. I. Top: Spatial distribution of cells annotated as per axial identities. Middle: Cells assigned 
to PRt, Precursor (Prec.) and UBCt identities. Bottom: Expression of marker genes, TULP1, EOMES and TRPC3, for axial identities 
PRt, Precursor and UBCt, respectively. MKI67 expression denotes cell-cycling cells. Scale bar, 200 µM. J. Developmental trajectory of 
cell-states in MB129 (left). In silico loss of CRX (middle) and EOMES (right) inhibits and promotes the acquisition of PRt cell-states, 
respectively. Tumor cells are colored as per cell-state identities. Arrows show predicted local trajectory of cells. K. Axial-state transition 
model suggesting presence of PAX6 expression leads to differentiation of tumor cells along the bifurcating PRt and UBCt trajectory. 
L. Frequency of novel lncRNA (ELP4-AS) and a novel spliced form (ELP4-AS:IMMP1L) in subtype VII tumors of the ICGC cohort. 
Boxplot distribution of PAX6 expression in Group 3/4 tumors (ICGC cohort). Samples with ELP4-AS transcription (with or without 
splicing to IMMP1L, n= 13/104) (grey box) are grouped separately from rest of the tumors, which are grouped as per subtype identity.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2024. ; https://doi.org/10.1101/2024.02.09.579680doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579680
http://creativecommons.org/licenses/by-nc/4.0/


11

Group 4 (Precursor/UBCt cells) tumor programs, confirming 
the intermediate nature of these tumor samples (Fig. 5H; 
Fig. S12I,J). Individual tumors recapitulated the axial TF-
GRN activity pattern as observed in the integrated Group 
3/4 multi-omic atlas (Fig. S12K-P; Fig. 2B), albeit without 
the MYC states due to absence of MYC expression. We then 
investigated the spatial distribution of tumor cell-states in 
two (out of three) of these intermediate tumors, in which 
we had appropriate tissue available. This spatial analysis 
showed that PRt and UBCt cells were spatially resolved (Fig. 
5I; Fig. S13A-C), suggesting spatial compartmentalization 
of axial-states within intermediate subtype VII samples. 
	 Altogether, the presence of the divergent PRt/Precursor/
UBCt tumor states in individual tumors suggests a shared 
regulatory landscape connecting these states, and that the 
TF-GRN interactome driving heterogeneity across Group 
3/4 tumors also drives the intermediate identity of individual 
tumors.
	 To further test if the dual lineage in these intermediate 
tumors arises from mutual repression of PRt- and UBCt-
associated TF-GRNs, as proposed earlier (Fig. 3D), we 
computationally knocked-down CRX and EOMES in 
individual tumors using CellOracle (28). In silico loss of 
CRX inhibited specification of PRt trajectory and loss of 
EOMES inhibited acquisition of UBCt states while pushing 
cells toward PRt identity (Fig. 5J; Fig. S14A-B). This data 
suggests that indeed potential mutual repression between 
key PRt and UBCt TF-GRNs drives tumor to acquire either 
Group 3 or Group 4 identity, and UBC specification is 
indeed the developmental time point that separates Group 3 
and Group 4 (Fig. 4E). The absence of PAX6 TF-GRN in our 
SCENIC+ analysis prevented us from performing in silico 
PAX6 knock-down. However, based on PAX6 expression and 
motif enrichment, together with the known dual function 
of PAX6 in retinal and rhombic lip development (26, 27), 
we propose that PAX6 expression in the Precursor pool 
maintains a bi-potent state that facilitates both the PRt- and 
UBCt-identity within the same tumor sample, but not in the 
same tumor cells (Fig. 5K).
	 Genetic aberrations that could explain this sustained 
subtype-specific PAX6 expression, such as small variants, 
copy number aberrations or structural variants, have not 
been identified to date. Therefore, we searched for potential 
somatic aberrations underlying this aberrant expression, 
using bulk RNA-Seq data of subtype VII tumors from the 
ICGC cohort (11-14). We identified a previously unknown 
non-coding transcript downstream of the PAX6 locus, and 

antisense to the ELP4 gene (termed here as: ELP4-AS, Fig. 
5L; Table S9). Expression of this novel transcript positively 
correlated with PAX6 expression (Fig. 5L; 12/21 of subtype 
VII samples and 1/4 of subtype I sample). We also identified 
samples where ELP4-AS was spliced to the downstream 
IMMP1L gene (ELP4-AS:IMMP1L, Fig. 5L), resulting 
in a putative chimeric lncRNA in ~57% (8/13 tumors) of 
ELP4-AS+ cases (Fig. S15A). All the 12 subtype VII tumors 
harboring ELP4-AS expression showed intermediate (n=4) 
or a predominantly Precursor/UBCt (n=8) identity, further 
alluding that a mechanism driving PAX6 upregulation drives 
tumors toward Group 4-like tumor states (Fig. S15B).

DISCUSSION
	 Despite advances in identifying a unified rhombic lip 
origin of Group 3/4 medulloblastoma (8, 9), the causes of the 
underlying heterogeneity within this group remain unknown. 
Our single-cell multi-omic atlas unravels the molecular 
underpinnings driving Group 3/4 subtype-specific biology, 
while also addressing the continuity among these subtypes. 
Master regulators of retinal lineages, such as OTX2, CRX 
and PAX6, together with TFs driving UBC differentiation, 
such as BARHL1, LMX1A and EOMES, are among the 
known modulators of regulatory circuits driving Group 
3/4 medulloblastoma heterogeneity (11, 29). Our analysis 
delineates the TF-interaction network that connects these 
master regulators to drive divergent tumor states in the same 
regulatory landscape; we also propose the regulatory logic 
that determines the transition across these states. We show 
that the presence of photoreceptor signature in Group 3/4 
medulloblastoma, first reported in 1991 by Kramm et al. (22) 
is due to aberrant activation of a CRX-driven photoreceptor-
specification cascade, as also suggested by Garancher et 
al. (29). Additionally, we show that the broad separation of 
Group 3 and Group 4 medulloblastoma stems from the failure 
of Group 3 tumors to attain EOMES/LMX1A-driven UBC 
identity and thus are propelled towards an alternative CRX/
NRL-driven photoreceptor identity through the remodeling 
of the UBC progenitor (RLsvz) regulatory network. We 
suggest expression of key master regulators including 
OTX2 and PAX6 in the UBC progenitors prime this state to 
acquire divergent retinal photoreceptor lineage, in the case 
of stalled UBC specification. Further, we propose that, apart 
from arising at distinct stages/states during UBC lineage 
differentiation (8, 9), the mutual repression between CRX/
NRL- and EOMES/LMX1A-driven GRNs contributes to the 
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mutual exclusion of Group 3 and Group 4 tumor identities.
	 Our study identifies the connecting links between the 
oncogenic events and underlying lineage determinants 
that drive tumor identity away from the normal cerebellar 
UBC lineage, and induce aberrant retinal photoreceptor-
lineage identity. Our data opens up an exciting possibility 
whereby a GFI1B/PAX6-driven tumor model, which shows 
co-enrichment of typically mutually exclusive PRt and 
Precursor/UBCt associated TF-GRN programs, can be tuned 
by modulating the TF activity to obtain pure Group 3- or 
Group 4-like tumors. Such model(s) would represent the 
spectrum of Group 3/4 heterogeneity and further improve our 
understanding of mechanisms that drive Group 3 or Group 4 
identity and pinpoint underlying therapeutic vulnerabilities. 
A deeper understanding of lineage specification in Group 3/4 
medulloblastoma could further identify yet unknown genetic 
or regulatory determinants of tumor identity.
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Supplemental Figure S1 legend next page ►
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◄cont. from previous page
Fig. S1: Group 3/4 medulloblastoma bulk RNA-Seq data analysis and metagene signatures. (A) Group 3/4 
medulloblastoma bulk-RNA-Seq metadata collated from three sources: ICGC, MAGIC and Newcastle (8, 10-14). Numbers 
of samples per category are depicted in parenthesis. (B and C) UMAP distribution of tumor samples on the transcription 
program landscape colored by group (B) and dataset (C) identity. (D) Scaled subgroup and subtype-specific metagene score 
(NMF component value) per sample. Samples are arranged on a Group 3 –Group 4 metagene score scale. (E) Per sample 
methylation-based Group 3 (top) and Group 4 (bottom) classification score (y axis) vs Group 3 – Group 4 metagene score (x 
axis). Tumor samples are colored as per subgroup identity. (F and G) Jaccard similarity between subgroup (F) and subtype 
(G) specific metagene gene-sets. For each metagene gene-set top 100 genes ranked by contribution per metagene were used. 
(H and I) Diffusion map of samples colored as per subgroup (H) and dataset (I) identity. (J) Diffusion map with samples 
colored as per subtype identity. DC2 is shown instead of DC3.
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Fig. S2: Group 3/4 tumor single-nucleus RNA-Seq (snRNA-Seq) data quality control (QC) metrics. (A) Number of cells 
per sample in snRNA-Seq data post QC filtering. (B-D) Per sample distribution of number of genes (B), unique molecular 
identifiers (UMIs) (C), and fractional mitochondrial gene contribution (D). Dotted line shows cut-off at 250 Genes (B) and 
300 UMIs (C). (E and F) UMAP distribution of cells in the merged snRNA-Seq data (without batch correction) colored by 
sample identity (E) and predicted cell-type labels using reference cerebellum data (20) (F). Non-neuronal normal cells are 
encircled. (G and H) UMAP distribution of LIGER-fMNN batch-corrected snRNA-Seq data colored by predicted cell-type 
label (G) and identified non-tumor cells (Normal and not-determined/ ND) (H). 
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Fig. S3: Group 3/4 tumor single-nucleus ATAC-Seq 
(snATAC-Seq) data QC metrics. (A and B) Per sample 
Fragment size distribution (A) and Transcription Start 
Site (TSS) insertion profile (B). (C) Number of cells per 
sample snATAC-Seq data post QC filtering. (D and E) 
Per sample distribution of TSS enrichment score (D), 
and number of fragments (E). Dotted line shows cut-
off at 3 TSS enrichment (D) and 3000 fragment (E). 
(F) UMAP distribution of cells in the merged snATAC-
Seq data (without batch correction) colored by sample 
identity. Non-neuronal normal cells are encircled.
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Fig. S4: UMAP and diffusion map distribution of tumor cells based on TF-GRN AUC scores. (A-F) UMAP distribution 
of tumor cells colored by sample (A), KNN-leiden clusters (B), subgroup (C), subtype (D), axial (E) and cell-state (F) 
identities in the TF-GRN enrichment space. (G and H) 3D diffusion map distribution of tumor cells colored by subtype (G) 
and cell-state identity (H) in the TF-GRN enrichment space. 
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Supplemental Figure S5 legend next page ►
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◄cont. from previous page
Fig. S5: TF-GRNs driving Group 3/4 medulloblastoma axial identities. (A) TF-GRNs (n=108) denoted by the name of 
regulatory TF. TF-GRNs are arranged by their order in the hierarchical clustering. Colored column bars represent TF-GRN 
groups, referred to as TF-GRN programs (1-9). (B and C) Jaccard similarity (B) and overlap similarity (C) indices for TF-
GRN sets. (D-L) Top three gene ontology (GO) Biological process and KEGG terms (sorted by –(Log10(adjusted p-value)) 
associated with genes contributing to each TF-GRN programs 1-9 (D-L).
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Supplemental Figure S6 legend next page ►
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◄cont. from previous page
Fig. S6: Human developing retina multi-omic atlas. (A and B) UMAP distribution of developing human retina snRNA-
Seq data (A) and snATAC-Seq data (B) (17) colored by cell-type annotation in the retinal TF-GRN enrichment space. 
(C) Overlap of snRNA-Seq and snATAC-Seq data colored by data modality. (D) Expression of selected marker genes in 
the annotated retinal cell-types. (E) Enrichment of selected retinal lineage marker gene-sets in retinal cell-types. Red box 
encircles retinal photoreceptor cell-types. (F) Relative enrichment of Group 3/4 medulloblastoma tumor TF-GRNs in the 
retina snRNA-Seq atlas. (G) Relative enrichment of tumor TF-GRNs associated cis-regulatory elements (CREs) in the 
retina snATAC-Seq atlas.
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Fig. S7: Axial gene-set signatures. (A and B) Weighted gene co-expression network analysis (WGCNA)-based module-trait 
relationship correlation heatmap. Rows are modules identified from WGCNA analysis. Columns are tumor cells clustered 
based on annotated axial identities (A) or cell-state identities (B). Correlation and associated p-value (in brackets) for each 
module-trait combination are noted in each cell (A). Representative module per axis marked with the axis name on the left 
in (A). (C) Hierarchical clustering of modules. (D-G) Scaled enrichment of signature axial gene-set module for UBCt (D), 
Precursor (E), PRt (F), and MYC (G) axes on the integrated tumor diffusion map. Diffusion map with cells colored by axial 
identities at the bottom for reference. (H-K) Scaled enrichment of signature axial gene-set module for UBCt (G), Precursor 
(H), PRt (I), and MYC (J) axes on the bulk-RNA-Seq diffusion map.
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Fig. S8: Regulatory feedback among TF-GRNs. (A) 
Graphical representation of TF-GRN directed cell-
state transition model. Proposed TF-GRN interactions: 
positive feedback loop between gA and gB. gA positively 
upregulates gC and gD inhibits gA. Expected correlations 
and enrichment of TF-GRNs per cell-state from the proposed 
TF-GRN network. (B) Pearson correlation between selected 
TF-GRNs activity in the single-cell multi-omic Group 3/4 
medulloblastoma data. (C) H3K27ac ChIP-Seq (11) signal 
profile around NRL (left) and LMX1A (right) loci in Group 
3/4 medulloblastoma subtypes. Subtypes are arranged from 
pure high PRt (top) to high Precursor (Prec.)/UBCt (bottom) 
phenotype. (D) Chromatin accessibility profile around NRL 
(left) and LMX1A (right) loci (overlapping region as selected 
from H3K27ac signature profile in (C)) in Group 3/4 
medulloblastoma subtypes. Tumor cells were pseudobulked 
by axial annotation. Predicted CRX, OTX2 and EOMES 
binding sites (based on published ChIP-Seq data) (24, 25), 
identified CREs and representative peak-to-gene links for 
the selected gene (NRL or LMX1A) shown below. Red box 
highlight putative CREs involved in cross-regulations for 
each gene.
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Fig. S9: Signature gene-set enrichment in cerebellar UBC lineage. (A-C) Relative enrichment of subtype-specific 
metagene signature (top 100 genes ranked by contribution) (A), Group 3/4 medulloblastoma weighted gene co-expression 
network analysis (WGCNA) module sets (B), and Group 3/4 medulloblastoma TF-GRNs (C) in the cerebellar UBC lineage. 
Density distribution of cerebellar UBC-lineage along pseudotime at the bottom for reference.  
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Supplemental Figure S10 legend next page ►
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◄cont. from previous page
Fig. S10: Bulk-RNA-Seq tumor TF-GRN enrichment. (A-H) TF-GRNs enrichment heatmap for subtype I (A), II (B), III 
(C), IV (D), V (E), VI (F), VII (G), VIII (H). MYC (amplification), PVT1 (fusion), GFI1, GFI1B and PRDM6 (rearrangements) 
events shown at the bottom of each strip. Samples with dual enrichment of PRt- and UBCt-associated TF-GRN programs 
in subtype VII samples are encircled in green box. Samples with enrichment of only PRt-associated TF-GRN programs are 
encircled in red box. (G). (I) Distribution of samples with documented genomic alterations in MYC, GFI1B and PRDM6 on 
the tSNE landscape. (J) Scaled expression of MYC on the tSNE landscape. (K) Group 3/4 tumor arranged on a Group 3 – 
Group 4 methylation classification score. Methylation classification score for each subgroup is on a scale of 0-1. (L) Boxplot 
distribution of intermediate classification score (1-abs(G3 score – G4 score)). Samples are grouped by subtype identity.
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Fig. S11: Increased PAX6 expression drives tumors toward UBCt states. (A) Expression of OTX2 (left), NRL (middle) 
and LMX1A (right) in bulk tumor samples across eight subtypes. Statistically significant upregulation of genes is shown by 
dashed lines and asterisk (log-fold change >0.5 and adjusted p-value < 0.01). Black, subtype VII tumors compared with II-
IV tumors. Red, subtype I tumors compared with II-IV tumors. (B) Predicted composition of axial cell-states in subtype VII 
samples (as shown in Fig. 5D) split by PRt, Intermediate or Precursor/UBCt annotation. PRt annotated samples exhibited 
enrichment of PRt-associated TF-GRN programs (red box, Fig. S10G), Intermediate samples exhibited dual enrichment of 
PRt and UBCt associated TF-GRN programs (green boxes, Fig S10G), Precursor/UBCt annotated samples are rest of the 
samples. (C-G) Expression distribution of PAX6 (C), CRX (D), NRL (E), EOMES (F) and LMX1A (G) in PRt, Intermediate 
and Precursor (Prec.)/UBCt annotated subtype samples, as in (B). Dots represent individual samples. Outliers not shown.
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Supplemental Figure S12 legend next page ►
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◄cont. from previous page
Fig. S12: Intermediate nature of PAX6+ subtype VII samples. (A) Enrichment of TF-GRNs in bulk RNA-Seq data of 
selected subtype VII samples, MB129, MB292 and MB26. (B) UMAP distribution of tumor cells for MB26. Cells are colored 
as per axial identities. Panels on the left shows diffusion pseudotime (top) and cell cycle score (bottom). (C) Enrichment 
of marker TF-GRNs gCRX (PRt), gTBR1 (Prec./Precursor) and gLHX1 (UBCt) shown on the MB26 UMAP. (D) UMAP 
distribution of tumor cells for MB292. Cells are colored as per axial identities.  Panels show diffusion pseudotime (top) and 
cell cycle score (bottom). (E) Enrichment of marker TF-GRNs shown on the MB292 UMAP. (F-G) Scaled PAX6 expression 
(top) and PAX6 motif enrichment (bottom) on the MB26 (F) and MB292 (G) UMAP. (H) Scaled expression of CRX and 
EOMES along with their Pearson correlation with PAX6 in MB26 (left), MB292 (middle) and MB129 (right). Enrichment of 
marker TF-GRNs shown on the MB292 UMAP. (I-J) Scaled Group 3 and Group 4 metagene AUC score in cells labeled as 
PRt, Precursor or UBCt in MB26 (I) and MB292 (J). (K-M) Tumor cell density along the PRt-to-UBCt trajectory pseudotime 
for MB26 (K), MB292 (L) and MB129 (M). (N-P) TF-GRN enrichment (left) and TF-GRN associated CREs enrichment 
(right) along the predicted PRt-to-UBCt trajectory pseudotime for MB26 (N), MB292 (O) and MB129 (P).
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Fig. S13: Spatial compartmentalization in subtype VII samples. (A-C) Spatial transcriptomic data for MB129 region 2 
(A), MB292 region 1 (B) and MB292 region 2 (C). Cells are colored by predicted axial annotation. Top panels show spatial 
location of cells labeled as PRt-, Precursor- and UBCt- like tumor cells. Bottom panels show scaled expression of marker 
genes TULP1 (PRt), EOMES (Precursor) and NNAT (UBCt). Expression of MKI67 represent cell-cycling tumor cells. Scale 
bars, 200 µM.
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Supplemental information for Joshi, Stelzer, Okonechnikov et al. 

Fig. S14: In silico perturbation of CRX and EOMES GRN. (A and B) In silico knock-out (KO) of CRX and EOMES in 
MB26 (A) and MB292 (B). Cells are colored by cell-states. Arrows show predicted local trajectory of cells in control, CRX 
KO and EOMES KO simulations.
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Fig. S15: ELP4-AS expression is associated with enrichment of UBCt states. (A) Summary figure depicting splice events 
between ELP4-AS and IMMP1L. (B) Predicted composition of axial cell-states in subtype VII samples belonging to the 
ICGC cohort (as shown in Fig. 5D) split by PRt, Intermediate or Precursor/UBCt annotation. Single asterisk (*) denotes 
presence of ELP4-AS and doublet asterisks (**) denotes presence of ELP4-AS:IMMP1L.  
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Supplemental Table Legends

Table S1. Metadata for samples included in the bulk RNA-Seq data.
Table S2. Metagene sets from NMF analysis of bulk RNA-Seq samples. Top 100 genes ranked by contribution are shown.
Table S3. Metadata for samples included in the single-nucleus multi-omic atlas.
Table S4. 108 TF-GRN sets obtained from integrated tumor data analysis.
Table S5. Gene module sets obtained from the weighted gene co-expression network analysis (WGCNA).
Table S6. Signature gene set for selected cell-types in GC/UBC and retinal lineages.
Table S7. Log-fold change and adjusted p-value for selected genes in subtype I/VII pair-wise comparisons.
Table S8. Top 250 differentially expressed genes in subtype I and subtype VII tumor in pair-wise comparisons.
Table S9. ICGC samples with ELP4-AS or ELP4-AS:IMMP1L transcripts.
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Materials and Methods
Sample selection 
Target tumor tissue samples were collected from published 
studies (ICGC (14) and INFORM (30) cohorts). No statistical 
methods were used to pre-determine the sample size. 
Experiments were not randomized, and investigators were 
not blinded to tumor sample characteristics and experiment 
outcome.
per cluster to obtain the TF-GRN enrichment heatmap. 
The scaled TF-GRN matrix (clusters x TF-GRNs) was 
hierarchically clustered to obtain groups of co-enriched TF-
GRNs (annotated as TF-GRN programs) and groups of tumor 
cluster exhibiting similar TF-GRN activity (annotated as 
tumor axes and cell-states). We also used addmodulescore() 
(Seurat, R) (41) to calculate activity scores for each of the 
identified 108 TF-GRN sets in the combined tumor cell data 
and used this score to calculate Pearson correlation between 
TF-GRNs.

Single-nucleus multi-omic sequencing
Flash frozen tumor samples were processed to extract 
nuclei as described (20). Tumor samples were finely cut 
into pieces using a surgical blade on dry ice. Cut tissue was 
homogenized in the homogenization buffer (for details of 
reagents, 20) by trituration or douncing with a micropestle. 
Cellular debris was removed by centrifugation at 100g for 
1 min, followed by nuclei pelleting from the supernatant 
at 500g for 5 min. Pelleted nuclei were washed once in the 
homogenization buffer before pelleting again at 500g for 5 
min. Washed nuclei were re-suspended in 1x Nuclei buffer 
(10x Genomics) and filtered through a 40µm filter to remove 
the left-over debris. Nuclei concentration was estimated by 
counting nuclei on Countess II FL Automated Cell Counter 
(Thermo Fisher Scientific) with Hoechst DNA dye and 
propidium iodide for nuclei staining. Extracted nuclei were 
processed using Chromium Single Cell Multiome ATAC + 
Gene expression kit and Chromium Controller instrument 
(10x Genomics) as per manufacturer’s recommendations. 
One sample, MB248, was processed with Chromium 
Next GEM Single Cell 3’ v3.1 and ATAC v1.1 kits, as per 
manufacturer’s recommendation. 15,000-20,000 nuclei were 
loaded per channel along with the Multiome/3’/ATAC gel 
bead. DNA and cDNA libraries were prepared as described 
in respective kit protocols. Libraries were quantified using 
Qubit Fluorometer (Thermo Fisher Scientific) and profiled 
using Fragment Analyzer. GEX and ATAC libraries were 
sequenced using NextSeq2000 to recommended lengths and 
depth. If the ATAC library was not of good quality, we still 

used the obtained RNA-Seq library if that was found to be 
of sufficient quality. RNA-Seq and ATAC-Seq datasets were 
further analyzed separately.

Single-nucleus RNA sequencing (snRNA-Seq) data 
processing
De-multiplexed reads were aligned to human genome 
assembly GRCh38 (v. p13, release 37, gencodegenes.
org). Genome version associated comprehensive gene 
annotation (PRI) was customized by filtering to transcripts 
with the following biotypes: protein coding, lncRNA, 
IG and TR gene and pseudogene as recommended by 
cellranger mkgtf wrapper. Reads were aligned using 
STARsolo (31) with parameters: --soloType CB_UMI_
Simple --soloFeatures Gene GeneFull --soloUMIfiltering 
MultiGeneUMI --soloCBmatchWLtype 1MM_multi_
pseudocounts --soloCellFilter None --outSAMmultNmax 1 
--limitSjdbInsertNsj 1500000. For overlapping genes where 
intronic alignment recovered low counts, exonic alignment 
counts were used. Predicted cells were separated from 
debris using diem pipeline (R) (32). Cells with mitochondria 
fraction > 1 median absolute deviation (MAD) above the 
mean or above 2% (whichever is greater), and number 
of detected genes greater than 6600 were filtered out. We 
further removed cells with an intronic fraction (number 
of reads aligned to intron/total number of reads aligned to 
exon+intron) less than 25%. Filtered cells were then corrected 
for background signature using SoupX  (R) (33) and celda 
(decontXcounts(), R) (34) pipeline. Finally, putative doublets 
identified by scrublet (Python) (35) for snRNA-Seq data and 
those identified from snATAC-Seq data (see below, Single-
nucleus ATAC sequencing data processing) were removed. 
Filtered gene expression matrices were normalized using 
the scran (R) (36) approach. A list of 1,500 highly variable 
genes (HVG) per sample was also obtained after removing 
mitochondrial (prefix: MT-) and ribosomal genes (prefixes: 
RPS, RPL, MRPS, MRPL). HVG from all the samples were 
combined, and sex-chromosome-specific genes (chr X and 
Y) were further removed to obtain a set of combined sample 
HVG gene-set for the single-cell cohort. Post-identification 
of “normal” cells (described below, Single-cell annotation), 
a list of 1,500 HVG was re-calculated from each sample and 
a combined tumor HVG gene-set was obtained from their 
union after filter sex chromosome specific genes.

Tumor single-cell annotation
We used a published single-nucleus developing human 
cerebellum atlas (20) as a reference to identify putative cell-
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identities of each tumor cell, particularly to identify non-
tumor cells, such as endothelial, immune or glial cell-types. 
Normalized gene expression matrices from reference and 
target (tumor samples) were subsetted to the intersection 
of HVGs (5,000 genes from reference, combined sample 
HVG from single-cell tumor data) and cosine scaled 
(cosineNorm(), batchelor, R) (37). A LinearSVC model 
(sklearn.svm, Python) was first calibrated using Calibrat
edClassifierCV(method=’isotonic’) (sklearn.calibration, 
Python) using the reference data and then the fitted model 
was used to assign best matching cell identities to tumor cells. 
Cells that were identified as immune, mural/endothelial, 
astrocytes or oligodendrocytes were assigned as “normal” 
cells. Additionally, cells identified as cerebellar granule 
neurons (GC-defined) but appeared as a distant cluster on 
UMAP, separated from the bulk of tumor cells, were also 
assigned as “normal”. These normal cells were removed for 
the integrated tumor data analysis.

Integration of snRNA-Seq data
We integrated all tumor samples together with and without 
batch-correction (across tumor samples) using LIGER (R) 
(38). Normalized gene-expression matrices from individual 
samples were subsetted to the combined sample HVG 
set, followed by cosine scaling. The scaled expression 
matrices were then used as an input for integrative NMF 
factorization using the function optimizeALS(k=50, max.
iters=100000). The obtained factors were then batch 
corrected using the fastMNN approach (reducedMNN(), 
batchelor, R). Corrected and uncorrected factors were used 
to obtain UMAP embedding of the integrated snRNA-Seq 
data. The batch corrected factors were further used to cluster 
cells using KNN (sklearn.neighbors, kneighbors_graph( 
n_neighbors=11, metric=’cosine’, include_self=True), 
Python) and leiden clustering (leidenalg, lfind_partition(), 
Python).

Single-nucleus ATAC sequencing (snATAC-Seq) data 
processing
ATAC-Seq reads were aligned to GRCh38 using Cellranger’s 
cellranger arc wrapper and processed downstream using 
ArchR (R) (39). Briefly, fragment files obtained post alignment 
were converted into arrow files (createArrowFiles()) 
using  custom gene annotation (same annotation as used 
for snRNA-Seq analysis) with a cut-off Transcription Start 
Site (TSS) enrichment of 3 and minimum 3000 fragments 
per cell. Putative doublets were identified by calculating a 
doublet score per cell (addDoubletScores()) and filterRatio 

of 1 (filterDoublets()), and were removed  along with 
doublets identified in the snRNA-Seq processing. Cells with 
high fragment counts, 2x MAD above mean, were further 
removed. Filtered cells were then clustered and a final QC 
was done by removing clusters that exhibited comparatively 
low TSS enrichment and number of fragments per cell, 
along with lack of enrichment of known marker genes, 
obtained from the integrated snRNA-Seq data analysis. Cell 
clusters were also assigned putative “normal” identity if they 
were enriched for markers for immune, mural/endothelial, 
astrocyte or oligodendrocyte lineage, based on predicted 
gene-scores.
 
Integrating snRNA-Seq and snATAC-Seq data
Out of the 38 samples in the single-cell cohort, 32 were 
obtained from the multi-omic approach, with only a single 
tumor sample, MB248, that had snRNA-Seq and snATAC-
Seq data from separate experiments. From here onwards, we 
only used tumor cell data in snATAC-Seq and hence any cell 
identified as “normal” based on snRNA-Seq or snATAC-Seq 
processing were removed. For multi-omics data, the majority 
of cells had both snRNA-Seq and snATAC-Seq data, but as 
per-sample snRNA-Seq and snATAC-Seq data was processed 
separately, variable number of cells were obtained per sample 
that passed QC parameters in one modality (snRNA-Seq or 
snATAC-Seq) but not in the other. To maximize data for 
downstream processing, we did not remove these cells from 
either data set, snRNA-Seq or snATAC-Seq, but imputed 
the missing RNA counts (normalized logcounts) for cells in 
the snATAC-Seq data of the same sample. Before imputing, 
snATAC-Seq data clusters that had RNA counts for less than 
50% of cells or total number of cells with RNA counts was 
less than 100 were removed due to lack of a proper reference 
in these clusters. The imputed RNA count was then obtained 
from a weighted sum of normalized logcounts of 5 nearest 
neighbors (sklearn.neighbors.NearestNeighbors()). For 
sample MB248, snRNA-Seq and snATAC-Seq data were 
integrated using addGeneIntegrationMatrix() (ArchR).
	 Post integration, a joint dimensionality reduction of 
snRNA-Seq and snATAC-Seq data was obtained per sample. 
Using addCombinedDims() (ArchR), we combined Latent 
Semantic Indexing (LSI) based factorization of snATAC-
Seq data to singular value decomposition (SVD) based 
factorization of snRNA-Seq data, excluding dimensions 
that had a correlation of greater than 0.75 to sequencing 
depth. The joint dimensional reduction was used to identify 
clustering (referred to as combined_cluster) and UMAP 
representation of the combined ATAC-RNA data.
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Per sample peak calling in the snATAC-Seq data
Peaks were called per-sample on the tumor cells grouped 
by combined_cluster annotation. First a minimum of 
40 cells and a maximum of 500 cells per group, with a 
sampling ratio of 0.8, were used to generate pseudobulk 
replicates via addGroupCoverages(). Then peaks were 
identified using MACS2 caller with a reproducibility of 2 
via addReproduciblePeakSet(). Rest of the parameters used 
were defaults as defined in the function definition.

Creating a cisTopic object per sample
In order to prepare data for SCENIC+ pipeline (Python) (15), 
the “peaks by cells” matrix (referred to as peak matrix here 
onwards) obtained from the ArchR analysis was converted 
to cisTopic object (pycisTopic, Python) to obtain topics and 
differentially accessible regions (DARs), which represent 
candidate enhancers for SCENIC+ analysis. Peak matrix 
was reduced to 50 topics (run_cgs_models(), pycisTopic), 
obtained topics were binarized into region sets by ‘otsu’ 
method and selection of top 3,000 regions per topic. DARs 
were identified by first identifying highly variable features 
(HVF), based on the log-normalized peak matrix, and then 
identifying marker regions using a cut-off adjusted p-value 
less than 0.05 and Log2FC greater than 0.5. If no marker 
regions were identified, then lower thresholds (Log2FC <0.1 
and adjusted p-value <0.5) were used.
 
Creating motif-enrichment dictionary
Candidate enhancer regions identified from topic analysis 
and DARs were then assessed for motif-enrichment leading 
to creation of cistromes, an object associating transcription 
factors (TFs) to potential target regions. We used run_
pycisTarget() wrapper from SCENIC+, along with motif-
ranking, motif-score and motif-annotation provided by the 
Aertslab for GRCh38 (15) to obtain the TF-region cistromes 
per sample. Default settings were used for the function with 
the exception of run_without_promoters = True. Further, 
only TFs that were present in the combined tumor HVG set 
were selected for further processing.

Gene regulatory network identification
We used the SCENIC+ approach for the multi-omic data to 
identify TF-associated gene regulatory networks (TF-GRNs) 
per sample. To identify tumor TF-GRNs, we first removed 
cells that were assigned as “normal” identity in snRNA-Seq 
or snATAC-Seq data processing. For each sample, we used 
snRNA-Seq data (after converting it into anData object), 
snATAC-Seq data (as cisTopic object) and motif-enrichment 

dictionary (obtained from pycisTarget) to create a SCENIC+ 
object. Additionally, we provide a TF adjacency matrix with 
correlation values from a separate run of pyscenic (Python) 
(16) using ‘genie3’ method (-m flag).  SCENIC+ first 
identified region-to-gene linkage for identified enhancers 
and their target genes and then assigned TF-to-gene links 
by associating TF that are enriched in the enhancers found 
linked to target genes. In the final step, SCENIC+ uses 
region-to-gene and TF-to-gene links to identify regulons 
(TF-to-region-to-gene links) that are among the top ranked 
based on importance scores and assigns positive or negative 
regulatory relationships based on the correlation between 
the TF and assigned target gene. SCENIC+ outputs a list 
of possible regulons with putative activation or repression 
relationships. For our analysis, we focused on positive TF-
target interactions, represented as ‘+_+’ in SCENIC+.

TF-GRNs selection and compilation
For each sample, a set of active TF-GRNs was identified using 
SCENIC+ approach as described above. For each of the TF-
GRNs, an “Area Under the Curve” (AUC)-based enrichment 
score (AUCell_run(), AUCell, R) (16) was calculated for all 
the tumor cells using log normalized RNA counts (including 
the imputed counts). From the identified TF-GRNs, GRNs 
associated with heterogeneity were identified based on the 
differential enrichment of TF-GRN AUC scores across 
combined_cluster annotation using Wilcox-rank test 
(findmarkers(), scran, R). The top three marker TF-GRNs 
per cluster per sample were used as representative of 
differentially active GRNs for that sample. After identifying 
such sets of TF-GRNs for each sample, we combined the 
obtained gene-sets as follows: 1) we selected TFs that 
were found to be associated with differentially active TF-
GRNs in at least two samples, and then 2) for each of these 
selected TFs, we filtered target genes that were identified as 
linked to the TF in more than 20% of the samples where 
the TF was found to be active, with the association being 
present in at-least three samples. TF-GRN sets with sizes 
of less than 15 genes (including the TF) were also removed. 
In this way, we identified a conserved set of TF-gene links 
that were biologically replicated while reducing the number 
of associated genes by increasing the number of replicates 
required for the TFs that were widely used. This resulted in 
108 TF-GRNs (Supplementary Table S4).

Integrating tumor RNA data across samples using TF-
GRN enrichment scores
We obtained the AUC enrichment score for each of the 
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TF-GRN gene-sets (n=108) for all of the tumor cells using 
AUCell_run(aucMaxRank=0.1*nGenes, normAUC=TRUE) 
(AUCell). The resulting enrichment score matrix was 
factorized using NMF (rank=25) and the obtained NMF 
factors were used for clustering (KNN-leiden) the integrated 
tumor data (resulting in 101 clusters), and obtained UMAP 
embedding and diffusion plots (destiny, R) (40). The TF-
GRN AUC score matrix was scaled across cells and averaged 
per cluster to obtain the TF-GRN enrichment heatmap. 
The scaled TF-GRN matrix (clusters x TF-GRNs) was 
hierarchically clustered to obtain groups of co-enriched TF-
GRNs (annotated as TF-GRN programs) and groups of tumor 
cluster exhibiting similar TF-GRN activity (annotated as 
tumor axes and cell-states). We also used addmodulescore() 
(Seurat, R) (41) to calculate activity scores for each of the 
identified 108 TF-GRN sets in the combined tumor cell data 
and used this score to calculate Pearson correlation between 
TF-GRNs.

Integrating snATAC-Seq data across samples
ArchR generated arrows files across tumors were merged 
to obtain a combined ArchR object. The merged ArchR 
object was factored using addIterativeLSI(iterations=5,  
clusterParams = list(resolution = c(0.1, 0.2, 0.4, 0.8), 
sampleCells = 20000, n.start = 10), varFeatures = 100000, 
dimsToUse = 1:100, totalFeatures = 500000) and obtained 
factors were used to calculate joint UMAP representation of 
the snATAC-Seq data. The merged ArchR object was then 
subsetted to tumor cells to identify peaks in the integrated 
data. Similar to peak identification in individual samples, first 
the integrated data was pseudobulked by tumor cell clusters 
(as identified in Integrating tumor data using TF-GRN 
enrichment scores) using addGroupCoverages(maxCells 
= 1000,   minReplicates = 5,   maxReplicates = 15,  
maxFragments = 50 * 10^6). Peaks were called using addRe
produciblePeakSet(reproducibility = “2”). Frequency of the 
identified peak’s activity per tumor cluster was calculated 
by dividing the number of cells in a cluster in which the 
peak was detected by the total cluster population. Peaks that 
showed less than 3% frequency in all the tumor clusters were 
filtered out to obtain a robust peak set.

TF-GRN cis-regulatory elements (CREs) activity in 
tumor cells
Cis-regulatory elements (CREs) associated with a candidate 
TF and its identified target genes were combined to obtain 
a non-overlapping region set that defined the putative 
functional binding regions of that TF. For each TF-GRN, the 

obtained CREs were filtered to those CREs that overlapped 
with the above identified robust peak set (see Integrating 
snATAC-Seq data across samples), which together 
represented a pseudo-peak for that TF-GRN. A TF-GRN x 
tumor cluster pseudo-peak counts matrix was obtained by 
summing the peak counts of the associated CREs per tumor 
cluster. This matrix was divided by sum of column values, 
scaled to 10,000, and finally log2 transformed to obtain 
a  normalized CRE activity matrix. The normalized CRE 
activity matrix was scaled across rows to obtain the CRE 
enrichment heatmap.

Subtype VII tumor sample trajectory analysis
TF-GRN AUC score for the integrated tumor data was 
subsetted by sample and used to obtain UMAP representation 
and diffusion map based pseudotime. Tumor cells with 
snATAC-Seq data were used to obtain PRt to UBCt trajectory 
using addTrajectory()(ArchR). The obtained trajectory was 
used to calculate TF-GRN and associated CRE enrichment 
signatures across pseudotime.

Weighted gene co-expression network analysis (WGCNA) 
We used the combined logcounts and final annotation for 
the tumor data to identify a set of genes that showed axes 
or cell-state correlated activity using WGCNA (R) (42). 
A normalized gene expression matrix was subsetted to a 
combined tumor HVG set. For the WGCNA run, softPower 
was set to 9 and minimum module size was set to 20. A 
total of 24 modules were identified. Modules showing 
highest correlation with axial identities were selected as 
representative for the respective annotation.

In silico gene knock-out
CellOracle (R) (28) approach was used to perform in silico 
perturbations for CRX and EOMES in subtype VII tumor 
single-cell data. A sample-specific TF-GRN network, 
identified through the SCENIC+ analysis, was provided 
as an input in the form of a TF-target dictionary. For each 
sample, raw gene expression counts, PCA calculated using 
runPCA() (scran), and TF-GRN AUC score-based diffusion 
pseudotime were used. Expression of CRX/EOMES was set 
to 0 to perform in silico loss-of-function analysis.

Bulk tumor RNA-Seq data processing
The bulk RNA-Seq data was collated from published 
studies for three cohorts: ICGC (11-14), MAGIC (8) and 
Newcastle (10). Except for the ICGC cohort, processed 
read count matrices were used for MAGIC and Newcastle 
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samples. For samples belonging to the ICGC cohort, raw 
reads were aligned to human genome assembly GRCh38 
(v. p13, release 37, gencodegenes.org), using STAR 
aligner (43). RNA-Seq samples belonging to individual 
cohorts were normalized separately using DESeq2 (R) (44). 
Intersection of genes among the top 5,000 HVGs per cohort 
were used for subsetting data for NMF factorization. NMF 
factorization was performed using sklearn.composition.
NMF (init=”nndsvd”, max_iter=100000). NMF rank 2 and 
8 were used to obtain subgroup- and subtype-associated 
latent factors or metagene signatures. To obtain the gene-
set associated with each latent factor/metagene signature, 
the top 100 genes ranked by contribution to that factor 
were used. The obtained NMF latent factors (rank=8) were 
used for UMAP, tSNE, and Diffusion map projection of 
the bulk data. Differentially active genes in subtype I or 
VII tumors were obtained from pairwise comparison using 
lfcShrink(type=”ashr”) (DeSeq2).

Gene-set AUC scores for bulk RNA-Seq data
AUC enrichment scores of the TF-GRN gene-sets or 
WGCNA identified modules were calculated for each of the 
bulk tumor samples using AUCell_run(). AUC scores for 
tumor samples were scaled for each cohort (ICGC, MDT, 
and Newcastle) separately and then merged. Scaled TF-
GRN AUC scores were used to obtain tSNE representation 
of the bulk-RNA-Seq tumor data on the TF-GRN enrichment 
space. 

Human retina single-cell multi-omic atlas data processing
Processed filtered snRNA-Seq and snATAC-Seq data for the 
developing human retina were obtained from GSE183684 
(17). snRNA-Seq and snATAC-Seq data were processed 
similar to tumor data. snRNA-Seq data was integrated 
together without batch-correction using NMF factorization 
(rank 25) and clustered using KNN-leiden approach. 
Obtained clusters were annotated based on marker gene 
expression (17). For SCENIC+ analysis, snRNA-Seq data 
was converted to anDATA format, and snATAC-Seq data was 
converted into cisTopic format followed by processing with 
pycisTarget to obtain cistromes, as described for the tumor 
data. Processed data was then used as input for SCENIC+ 
pipeline to obtain active regulons per sample. The top three 
TF-GRNs per “combined_cluster” for each of the samples 
were obtained based on differential AUC score enrichment 
(Wilcoxon test, findMarkers(), scran). TF-GRNs identified 
per sample were combined with a minimum requirement 
of the TF being associated with differentially expressed 

GRNs in at least two samples and the target gene being 
associated with the TF in at least 20% of the samples, with 
a minimum of three samples. Finally, TF-GRNs with a size 
of less than 15 genes were removed. Similar to the tumor 
data, the AUC score was calculated for each of the retinal 
lineage cells using AUCell_run(aucMaxRank=0.1*nGenes, 
normAUC=TRUE).
	 Integration of snRNA-Seq and snATAC-Seq data 
was obtained using scJoint (45). Normalized logcounts 
were used for snRNA-Seq and predicted gene scores 
(addGeneScoreMatrix(), ArchR) were used for snATAC-
Seq. Gene expression matrices were subsetted to top 5000 
HVGs across the integrated snRNA-Seq data excluding 
mitochondrial, ribosomal and sex chromosomal genes. 
scJoint based predicated labels for ATAC cells were used to 
annotate integrated snATAC-Seq data. For each of the ATAC 
cells, TF-GRN activity was imputed from the weighted sum 
of TF-GRN AUC score of the five nearest RNA cells obtained 
based on scJoint generated embedding for snRNA-Seq and 
snATAC-Seq data. Calculated TF-GRN AUC scores for 
snRNA-Seq data and imputed AUC scores for snATAC-Seq 
data were used to obtain joint representation of snRNA-Seq 
and snATAC-Seq data on the TF-GRN enrichment space. 
AUC scores from the snRNA-Seq data were used to obtain 
NMF model (rank=25), then the obtained model was used 
to factorize both the RNA-Seq and ATAC-Seq AUC score 
matrices. Post factorization, RNA and ATAC factor matrices 
were merged for a combined UMAP embedding.
	 Post-integration peak calling was done on the snATAC-
Seq data by grouping cells based on scJoint predicted labels. 
A sample ratio of 0.8, 2 minimum replicates and 8 maximum 
replicates were used to obtain pseudo-bulks, followed by 
calling peaks by MACS2 caller using a reproducibility of 2. 
A robust peak-set was obtained by removing peaks that were 
detected in less than 3% of cells in all the clusters.
Tumor TF-GRN gene-set enrichment score was obtained 
using AUCell_run() and retina logcounts gene expression 
matrix. TF-GRN AUC scores were scaled across cells and 
averaged by cluster to obtain a tumor TF-GRN gene-set 
enrichment heatmap.
	 Tumor TF-GRN CREs were intersected to obtain 
overlapping regions in the retinal robust peak matrix. Peak 
counts for all the CREs associated with each TF-GRN were 
summed to obtain TF-GRN by retina cluster matrix. The 
pseudo-bulked peak matrix was divided by column sums, 
scaled to 10,000, log2 transformed and finally scaled across 
clusters to obtain tumor TF-GRN CRE enrichment heatmap.
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Deconvolution of bulk RNA-Seq tumor data
Bulk RNA-Seq data was deconvoluted using BayesPrism (R) 
(46) separately for each cohort (ICGC, MDT, Newcastle). 
Tumor data with cell-state annotation was combined with 
non-neuronal cells from single-nucleus human cerebellum 
data (20) to create the reference for deconvolution. An 
intersection of combined single-cell multi-omic atlas derived 
tumor HVG set and the top 7,500 HVGs from the bulk tumor 
cohort was used to subset the gene expression matrices of the 
reference and target data. Estimated proportion for each of 
the reference cell-state were obtained for each of the tumor 
sample, and combined estimate of the non-neuronal cells 
were removed to obtain the proportional composition of 
tumor cells in terms of the reference cell-states as annotated 
in the integrated Group 3/4 medulloblastoma atlas.

ChIP-Seq data analysis
Published H3K27Ac ChIP-Seq data (11) was aligned to 
GRCh38 using bowtie2 (47). Duplicated, unmapped and multi-
mapped reads were marked and removed using sambamba. 
Deduplicated alignment bam files were sorted using 
sambamba and indexed using samtools. Obtained alignment 
was normalized using bamCoverage –normalizeUsing CPM 
–binSize 20 smoothLength 60 –extendedReads 150 –bl hg38.
blacklist.v2.bed (deepTools, Python) and converted into 
bigwig format. Enhancer signal for a subtype was obtained 
from averaged normalized signal of the constituting samples 
using wiggletools. wigToBigWig was used to convert 
obtained Wig files to bigwig and followed by conversion to 
BedGraph format using bigWigtoBedGraph tool. Bed files 
for human OTX2 (GSE137311),  CRX (GSE137311) and 
EOMES (GSE26097) binding regions were obtained from 
Remap (https://remap2022.univ-amu.fr/). Track plots were 
prepared by SparK (https://github.com/harbourlab/SparK).

Identification of ELP4-AS and ELP4-AS:IMMP1L
Novel long non-coding RNA transcript, ELP4-AS, was 
identified using StringTie based de novo transcriptome 
assembly using the ICGC cohort RNA-Seq data. The 
spliced variant of ELP4-AS with downstream IMMP1L was 
identified using Arriba toolkit based on the RNA-Seq data 
(48). Presence of ELP4-AS and novel splicing transcript was 
confirmed by RT-qPCR in individual samples. Presence of 
fusions at genome level was also investigated using WGS 
data and SOPHIA algorithm (49).

Gene-set AUC scores in the unipolar brush cell (UBC) 
lineage

In published human cerebellar snRNA-Seq data (20), the 
UBC lineage was defined as composed of the following cell-
types: rhombic-lip progenitor (RL progenitor), bi-potent 
GC/UBC progenitor (GCP/UBCP, annotated as UBCP in 
current study), differentiating UBC (UBC diff.) and defined 
(or differentiated) UBC (UBC def.). Normalized gene 
expression counts for the 5,835 cells representing the UBC 
lineage were extracted from the combined cerebellum atlas. 
Gene expression matrix was further subsetted to the top 
1,000 HVGs and factorized using optimizeALS() (LIGER, 
rank 15). Obtained iNMF factors were batch corrected 
using reducedMNN() and obtained corrected-iNMF factors 
were used to generate the UMAP representation of the UBC 
lineage. Obtained UMAP factors were used to calculate 
slingshot() (slingshot, R) (50) based pseudo-temporal 
lineage order with RL progenitor as the starting point. Cells 
were binned into 100 distinct bins based on pseudotime. 
AUC score for the NMF metagenes, TF-GRNs and WGCNA 
was calculated for each of the cells in the UBC lineage and 
scaled across cells. Scaled gene-set scores were smoothened 
using loess() along pseudotime, averaged per bin, followed 
by scaling across bins.

Multiplexed single molecule in situ hybridisation 
(smFISH) data analysis
For 12-week post-conception human cerebellum spatial 
mapping was performed using published processed smFISH 
dataset generated using the Molecular Cartography (Resolve 
Biosciences) and smFISH probeset targeting 100 genes (20). 
The dataset contains information on segmentation as defined 
by Baysor (51), and independently imputed cell type and 
state/subtype labels together with their prediction scores as 
estimated by Tangram (52). For tumor data, tumor samples 
were processed using a tumor specific set of target genes 
(53). Tumor cell identities were imputed at the cell-state 
level using Tangram using sample-specific snRNA-Seq data 
as reference.
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